Math, asked by anindyaadhikari13, 1 month ago

If the equations ax² + bx + c = 0 and cx² + bx + a = 0 has one root in common, then the value of a³ + b³ + c³ is -

(a) 3a(a + b + c)
(b) a² + b² + c² - ab - bc - ac
(c) 3(ab + bc + ac)
(d) 3abc​

Answers

Answered by saanvigrover2007
12

━━━━━━━━━━━━━━━━━━━━━━━━━━

\large \pmb{\sf{Question :-}}

If the equations ax² + bx + c = 0 and cx² + bx + a = 0 has one root in common, then the value of a³ + b³ + c³ is -

(a) 3a(a + b + c)

(b) a² + b² + c² - ab - bc - ac

(c) 3(ab + bc + ac)

(d) 3abc

━━━━━━━━━━━━━━━━━━━━━━━━━━

\large \pmb{\sf{Final \: Solution :-}}

 \pink \bigstar  \:  \color{green} \boxed{ \sf\color{blue}{ : \leadsto {a}^{3} +  {b}^{3}   +  {c}^{3}   = 3abc }}

━━━━━━━━━━━━━━━━━━━━━━━━━━

\large \pmb{\sf{Explanation :-}}

Let k be the common root of the equations ax² + bx + c = 0 and bx² + cx + a = 0

∴ak² + bk + c = 0

bk² + ck + a = 0

 \sf : \leadsto  \frac{ {a}^{2} }{ab -  {c}^{2} }  =  \frac{k}{bc -  {a}^{2}  }  =  \frac{1}{ac -  {b}^{2} }  \\

 \sf:  \leadsto k =  \frac{bc -  {a}^{2} }{ac -  {b}^{2} }  \\

  \sf:  \leadsto( cb -  {a}^{2} )^{2}  = (ab -  {c}^{2} )(ac -  {b}^{2} )

 \sf:  \leadsto  {a}^{3}  +  {b}^{3}  +  { c}^{3}  - 3abc = 0

 \blue \bigstar \:  \color{green}  \boxed{\sf \color{maroon}:  \leadsto  {a}^{3}  +  {b}^{3}  +  { c}^{3}   =  3abc }

━━━━━━━━━━━━━━━━━━━━━━━━━━

\sf \color{azure}\fcolorbox{pink}{purple}{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \#Bebrainly \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\:\:\: \: \: \: \:}

━━━━━━━━━━━━━━━━━━━━━━━━━━

\sf \color{azure}\fcolorbox{pink}{black}{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: @Saanvigrover2007 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by latabara97
0

this photo is your answer

Attachments:
Similar questions