Math, asked by AmlanjyotiBehera, 3 months ago

: If the expression Px² + 3x2 - 3 and 2x? - 5x+P when divided
by x – 4 leave the same remainder, find the value of P.​

Answers

Answered by pratikdhule5667
0

Answer:

Given, f(x) = ax³+3x²-3

\: \: \: \: \: \: g(x) = 2 {x}^{3} - 5x + ag(x)=2x

3

−5x+a

\begin{gathered} If \: f(x) \: is \: divided \: by \: (x-4) \\ then \: it \:leaves \: a \: remainder \: f(4) \end{gathered}

Iff(x)isdividedby(x−4)

thenitleavesaremainderf(4)

\begin{gathered}f(4) = a \times 4 ^{3} + 3(4 ^{2} ) - 3 \\ = a \times 64 + 48 - 3 \\ = 64a + 45\end{gathered}

f(4)=a×4

3

+3(4

2

)−3

=a×64+48−3

=64a+45

\begin{gathered} If \: g(x) \: is \: divided \: by \: (x-4) \\ then \: it \:leaves \: a \: remainder \: g(4) \end{gathered}

Ifg(x)isdividedby(x−4)

thenitleavesaremainderg(4)

\begin{gathered}g(4) = 2(4 ^{3} ) - 5 \times 4 + a \\ = 128 - 20 + a \\ = 108 + a \\ \\ \\ Given \: that \: remainders \: in \: both \: \\ cases \: are \: equal \: \\ \\ Now, \: \\ 108 + a = 64a + 45 \\ 63a = 108 - 45 = 63 \\ \\ a = \frac{63}{63} = 1\end{gathered}

g(4)=2(4

3

)−5×4+a

=128−20+a

=108+a

Giventhatremaindersinboth

casesareequal

Now,

108+a=64a+45

63a=108−45=63

a=

63

63

=1

Similar questions