if the external bisector of the Vertical angle of a triangle is parallel to its base then prove that the triangle is isosceles
Answers
Answered by
0
Step-by-step explanation:
Join A to D
Hence,
\begin{array}{l} AD\parallel BC \\ \Rightarrow \angle ACB=\angle CAD\, \, \left( { alternate\, \, angle } \right) \\ \Rightarrow and\, \angle BAC=\angle ACD\left( { alternate\, \, angle } \right) \\ \Rightarrow \end{array}
AD∥BC
⇒∠ACB=∠CAD(alternateangle)
⇒and∠BAC=∠ACD(alternateangle)
⇒
Hence
AB=AC (by ASA congurency )
so, it is isosceles triangle.
solution
Similar questions