Math, asked by natsudragonaire777, 1 month ago

If the f(x)=|X| + X and ,g(x)= |X | - X ,find fog (-3) and gof(-2 ).​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\red{\rm :\longmapsto\:f(x) =  |x| + x}

and

\red{\rm :\longmapsto\:g(x) =  |x|  - x}

Consider,

\rm :\longmapsto\:fog( - 3)

\rm \:  =  \: f\bigg[g( - 3)\bigg]

\rm \:  =  \: f\bigg[ | - 3| - ( -3 ) \bigg]

\rm \:  =  \: f\bigg[3 + 3\bigg]

\rm \:  =  \: f(6)

\rm \:  =  \:  |6|  + 6

\rm \:  =  \: 6 + 6

\rm \:  =  \: 12

\bf\implies \: \red{\boxed{ \bf \:\:fog( - 3) = 12}}

Now, Consider,

\red{\rm :\longmapsto\:gof( - 2)}

\rm \:  =  \: g\bigg[f( - 2)\bigg]

\rm \:  =  \: g\bigg[ | - 2|  - 2\bigg]

\rm \:  =  \: g\bigg[2  - 2\bigg]

\rm \:  =  \: g\bigg[0\bigg]

\rm \:  =  \:  |0| - 0

\rm \:  =  \: 0

\bf\implies \: \red{\boxed{ \bf \:\:gof( - 2) = 0}}

 \purple{\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\: Hence-\begin{cases} &\sf{fog( - 3) = 12} \\  \\ &\sf{gof( - 2) = 0} \end{cases}\end{gathered}\end{gathered}}

Similar questions