Math, asked by Sahildahiya8360, 10 months ago

If the first term of an AP is-24 and its 13th term is zero then find it’s common difference

Answers

Answered by Anonymous
3

Answer:

The common difference is 2.

Given:

  • The first term of an AP is -24.

  • \sf{13^{th}} term is zero.

To find:

  • Common difference (d).

Solution:

\boxed{\sf{tn=a+(n-1)d}}

\sf{\therefore} t13= -24+(13-1)d

\sf{\therefore} 0= -24+12d

\sf{\therefore} 12d=24

\sf{\therefore{d=\frac{24}{12}}}

\sf{\therefore} d=2

The common difference is 2.

Answered by TheSentinel
35

\purple{\underline{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}}} \\ \\

\rm{If \ the \ first \  term \ of \  an \  AP \  is \ -24 \ and }

\rm{its \ 13^{th} \ term \ is \ zero \ then \ Find }

\rm{it's \ common \ difference}

_________________________________________

\purple{\underline{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}}} \\ \\

\rm{\blue{\boxed{\red{The \  common \   difference \  is \ 2.}}}}

_________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm{The \  first \  term \  of \ an \ AP \  is \  -24.} \\ \\

\rm{{13^{th} \ term \  is \  zero.}}

_________________________________________

\sf\large\underline\blue{To \ Find} \\ \\

\rm{Common \  difference \ (d).}

_________________________________________

\green{\underline{\underline{\red{\boxed{\boxed{\purple{\star{\sf Solution:}}}}}}}} \\ \\

\rm{We \ are \ given,}

\rm{The \  first \  term \  of \ an \ AP \  is \  -24.}

\rm{t_1 \ = \ -24} \\

\rm{{13^{th} \ term \  is \  zero.}} \\ \\

\rm{t_13 \ = \ 0}

\rm{We \ know,} \\

\rm{\green{\boxed{\orange{t_n=a+(n-1)d}}}}

\rm{\therefore{ t_13= -24+(13-1)d}} \\ \\

\rm{\therefore{ 0= -24+12d}} \\ \\

\rm{\therefore{12d=24}} \\ \\

\rm{\therefore{d=\frac{24}{12}}} \\ \\

\rm{\therefore{\red{\boxed{\blue{d=2}}}}} \\ \\

\rm{\blue{\boxed{\red{The \  common \   difference \  is \ 2.}}}}

________________________________________

\rm\orange{Hope \ this \ helps \ :))}

Similar questions