if the first term of an ap is -5 and the common difference is 2 find the sum of first 6 terms
Answers
Answered by
1
Sum of AP=(n/2)[2a+(n-1)d]
where, a=first term of the series, d=common difference, n=number of terms
Here, a=-5, d=2, n=6
Sum= (6/2)[(2*(-5))+(6-1)(2)]
=3*[(-10)+(5*2)]
=3*[-10+10]
=3*0
=0
Sum of the given AP is 0.
Verification:
a1=-5
a2=-5+d=-5+2=-3
a3=-5+2d=-5+(2*2)=-5+4=-1
a4=-5+3d=-5+(3*2)=-5+6=1
a5=-5+4d=-5+(4*2)=-5+8=3
a6=-5+5d=-5+(5*2)=-5+10=5
Sum=a1+a2+a3+a4+a5+a6
=(-5)+(-3)+(-1)+1+3+5
=0
Similar questions