Math, asked by mkqwert2257, 9 months ago

If the first term of AP is -5 and the last term is 45.If the sum of the terms of the AP is 120,then find the number of terms and the common difference.

Answers

Answered by kuldeep20941
11

Answer:

=====================================

1. Total no. of terms = 6

2. Common Difference = 10

=====================================

Step-by-step explanation:

=====================================

See The Attachment My Friend....

=====================================

Attachments:
Answered by Vamprixussa
29

Given

The first term = -5

The last term = 45

Sum of n terms = 120

To Find

Number of terms = ?

Common Difference = ?

SOMETHING YOU NEED TO KNOW

Sₙ = n/2 (a+aₙ)

Sₙ = Sum of all terms

n = Number of terms

a = The first term

aₙ = The last term

\implies 120=\dfrac{n}{2}(-5+45)

\implies 240 = 40n

\implies n = \dfrac{240}{40}

\implies n = 6

\boxed{\boxed{\bold{Therefore \ the \ total \ number \ of \ terms \ is \ 6}}}}}}}}

Formula to be used

aₙ = a + (n-1)d

aₙ = The last term

a = The first term

n = Number of terms

d = Common Difference

\implies 45=-5 + (n-1)d

\implies 45+5=6-1(d)

\implies 50=5d

\implies d = \dfrac{50}{5}

\implies d = 10

\boxed{\boxed{\bold{Therefore, \ the \ common \ difference \ is \ 10}}}}}}

                                                           

Similar questions