Math, asked by sreeja80, 4 months ago

If the function

cos x+k sin x

is

2 cos x+3 sin x decreasing in its domain then

K belong to​

Answers

Answered by pulakmath007
19

SOLUTION

TO DETERMINE

The range of k for which the below function is decreasing in its domain

 \displaystyle \sf{f(x) =  \frac{ \cos x + k \: sin x}{2 \cos x + 3 \sin x} }

CONCEPT TO BE IMPLEMENTED

A function f(x) defined in a domain D is said to be decreasing in the domain if

f'(x) < 0 for every x ∈ D

EVALUATION

Here the given function is

 \displaystyle \sf{f(x) =  \frac{ \cos x + k \: sin x}{2 \cos x + 3 \sin x} }

Differentiating both sides with respect to x we get

 \displaystyle \sf{f'(x) =  \frac{(2 \cos x + 3 \sin x) \frac{d}{dx} ( \cos x + k \sin x) - ( \cos x + k \sin x) \frac{d}{dx} (2 \cos x + 3 \sin x)}{ {(2 \cos x + 3 \sin x)}^{2} } }

  \implies\displaystyle \sf{f'(x) =  \frac{(2 \cos x + 3 \sin x) ( -  \sin x + k \cos x) - ( \cos x + k \sin x)  ( - 2 \sin x + 3 \cos x)}{ {(2 \cos x + 3 \sin x)}^{2} } }

 \implies \displaystyle \sf{f'(x) =  \frac{ - 2 \cos x \sin x + 2k { \cos}^{2}x - 3 { \sin}^{2}x + 3k\cos x \sin x + 2 \cos x \sin x - 3 { \cos}^{2}x + 2k { \sin}^{2}x - 3k \cos x \sin x  }{ {(2 \cos x + 3 \sin x)}^{2} } }

 \implies \displaystyle \sf{f'(x) =  \frac{ 2k { \cos}^{2}x - 3 { \sin}^{2}x  - 3 { \cos}^{2}x + 2k { \sin}^{2}x }{ {(2 \cos x + 3 \sin x)}^{2} } }

 \implies \displaystyle \sf{f'(x) =  \frac{ 2k( { \cos}^{2}x  +  { \sin}^{2} x)- 3 ({ \sin}^{2}x   +  { \cos}^{2}x ) }{ {(2 \cos x + 3 \sin x)}^{2} } }

 \implies \displaystyle \sf{f'(x) =  \frac{ 2k - 3 }{ {(2 \cos x + 3 \sin x)}^{2} } }

Now f(x) is decreasing

 \therefore \:  \:  \displaystyle \sf{f'(x)  &lt; 0 }

 \implies \displaystyle \sf{ \frac{ 2k - 3}{ {(2 \cos x + 3 \sin x)}^{2} } &lt; 0 }

 \implies \displaystyle \sf{ 2k - 3 &lt; 0} \: (  \: \because \: denominator \: is \: positive)

 \implies \displaystyle \sf{ 2k &lt; 3}

 \implies \displaystyle \sf{ k &lt;  \frac{3}{2} }

 \implies \displaystyle \sf{k \:  \in \:  \bigg( -  \infty \:,  \:   \frac{3}{2}  \: \bigg) }

FINAL ANSWER

 \boxed{ \: \:   \displaystyle \sf{k \:  \in \:  \bigg( -  \infty \:,  \:   \frac{3}{2}  \: \bigg) } \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the nth derivative of sin 6x cos 4x.

https://brainly.in/question/29905039

2. Cos^-1(1-9^x/1+9^x) differentiate with respect to x

https://brainly.in/question/17839008

Similar questions