If
the function f: R->R is given
by f(x) = x²+2 and g: R- R be given
by g(x)=x/x-1
Find fog
gof
fog and
x-1
Answers
Answer :
• fog(x) = (3x² - 4x + 2) / (x² - 2x + 1)
• gof(x) = (x² + 2)/(x² + 1)
• fof(x) = x⁴ + 4x² + 6
Solution :
★ Given functions :
• f : R → R , f(x) = x² + 2
• g : R - {1} → R , g(x) = x/(x - 1)
★ To find :
• fog(x) = ?
• gof(x) = ?
• fof(x) = ?
★ fog(x) = f [ g(x) ]
=> fog(x) = f(x/x-1)
=> fog(x) = (x/x-1)² + 2
=> fog(x) = x²/(x-1)² + 2
=> fog(x) = x²/(x² - 2x + 1) + 2
=> fog(x) = [ x² + 2(x² - 2x + 1) ] / (x² - 2x + 1)
=> fog(x) = (x² + 2x² - 4x + 2) / (x² - 2x + 1)
=> fog(x) = (3x² - 4x + 2) / (x² - 2x + 1)
★ gof(x) = g [ f(x) ]
=> gof(x) = g(x² + 2)
=> gof(x) = (x² + 2) / [ (x² + 2) - 1 ]
=> gof(x) = (x² + 2) / (x² + 2 - 1)
=> gof(x) = (x² + 2)/(x² + 1)
★ fof(x) = f [ f(x) ]
=> fof(x) = f(x² + 2)
=> fof(x) = (x² + 2)² + 2
=> fof(x) = (x²)² + 2•x²•2 + 2² + 2
=> fof(x) = x⁴ + 4x² + 4 + 2
=> fof(x) = x⁴ + 4x² + 6