Math, asked by maheshtalpada412, 4 days ago

If the function
 \tt\[ f(x)=\left\{\begin{array}{c} \tt \dfrac{(1-\cos 4 x)}{x^{2}}, \text { if } x<0 \\ \\ \tt a, \text { if } x=0 \\ \\ \tt \dfrac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, \text { if } x>0 \end{array}\right. \]
continuous at x=0 , then the value of a is
 \red{ \rule{200pt}{3pt}}
Answer with proper explanation.

Don't Dare for spam.

→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​​

Answers

Answered by amitkumar44481
41

Answer :

a = 8.

To Find :

The value of a.

Solution :

If the function f( x ) is continuous at x = 0. then,

\tt \implies LHL = RHL = f( 0)  \\  \\ \tt or, \\  \\ \implies  \tt \displaystyle \lim_{x \to 0^{\pm}}  \tt f(x) = f(0)  \\  \\

\rule{100pt}{1pt}

LHL,

 \implies \: \displaystyle \lim_{x \to  {0}^{ - } }  \tt \dfrac{1 - cos4x}{ {x}^{2} }  \\  \\

 \implies \: \displaystyle \lim_{x \to  {0}^{ - } }  \tt \dfrac{2 {sin}^{2}2x }{ {(2x)}^{2} }  \times   {(2)}^{2}  \\  \\

 \implies  \tt 4 \times 2 \: \displaystyle \lim_{x \to  {0}^{ - } }  \tt {\Bigg(\dfrac{ sin2x }{ 2x}\Bigg)}^{2}  \\  \\

 \implies   \tt4 \times 2 . \\  \\

 \implies   \tt8 . \\  \\

\rule{100pt}{1pt}

RHL,

 \implies \: \displaystyle \lim_{x \to  {0}^{  +  } }  \tt \dfrac{ \sqrt{x} }{ { \sqrt{16 +  \sqrt{x}  - 4} } }  \\  \\

 \implies \: \displaystyle \lim_{x \to  {0}^{  +  } }  \tt \dfrac{ \sqrt{x} }{ { \sqrt{16 +  \sqrt{x}  } - 4 } } \times  \tt \dfrac{  \sqrt{16 +  \sqrt{x} } + 4}{ { \sqrt{16 +  \sqrt{x} } + 4 } }   \\  \\

 \implies \: \displaystyle \lim_{x \to  {0}^{  +  } }   \tt \dfrac{   \cancel{\sqrt{x}} \bigg( \sqrt{16 +  \sqrt{x} } + 4 \bigg)} {  \cancel{16} +  \cancel{\sqrt{x}} -  \cancel{  16} }  \\  \\

 \implies \: \displaystyle \lim_{x \to  {0}^{  +  } }   \tt   \sqrt{16 +  \sqrt{0} } + 4     \\  \\

 \implies \:  \tt8. \\  \\

So,

=> f ( 0 ) = a.

=> a = 8.

\rule{200pt}{2pt}

More Information

Continuous in R.

  • Polynomial function.
  • Modulus function.
  • Constant function.
  • Exponential function.
  • Sin x.
  • Cos x.
Answered by phelper27
14

SOLUTION :

please check the attached file

Attachments:
Similar questions