Math, asked by sahibha3546, 11 months ago

If the g. P 3/625 ,3/125,3/25,..and G.p1875,625,125,...have their nth terms equal, find n and nth term.

Answers

Answered by rajinsahu551
1

Answer:

I don't know

please follow me

Answered by sanjeevk28012
2

Given :

The geometric progression series \dfrac{3}{625} ,\dfrac{3}{125}, \dfrac{3}{25} , ..........

And

The geometric progression series is 1875 , 625 , 125

The nth term of both g.p series are same

To Find :

The number of term, and nth term

Solution :

For  geometric progression series

(i ) \dfrac{3}{625} ,\dfrac{3}{125}, \dfrac{3}{25} , ..........  are in g.p

So, common ratio = r = 5

For n term, g.p = t_n = a r^{n-1}

So,        t_n = \dfrac{3}{625} × 5^{n-1}

Again

For  geometric progression series

(ii )  1875 , 625 , 125 , ............. are in g.p

So, common ratio = r = 5

For n term, g.p = T_n = a r^{\dfrac{n}{2} -1}

So,        T_n = 1875 × 5^{\dfrac{n}{2} -1}

Since nth term of both series are equal

∴       t_n  =  T_n

Or,    \dfrac{3}{625} × 5^{n-1} =   1875 × 5^{\dfrac{n}{2} -1}

Or,  5^{n-1} = 625 × 625  × 5^{\dfrac{n}{2} -1}

Or,  \dfrac{5^{n} }{5}  = 625 × 625  × \dfrac{5^{\dfrac{n}{2} } }{5}

Or,  5^{n} =  625 × 625  × 5^{\dfrac{n}{2} }

Or,  \dfrac{5^{n} }{5\dfrac{n}{2} } =  625 × 625

or,  5^{\dfrac{n}{2} }  = 5^{8}

∴     \dfrac{n}{2}  = 8

i.e   n = 16

So, The number of terms = n = 16

Again

For n= 16

  t_1_6 = \dfrac{3}{625} × 5^{16-1}

Or, t_1_6 = \dfrac{3}{625} × 5^{15}

Or, t_1_6 = \dfrac{3}{625} × 3.05 × 10^{10}

∴  , t_1_6 = 1464 × 10^{5}

Hence,  The number of terms is 16  , And The 16th term is  1464 × 10^{5}  Answer

Similar questions