Math, asked by nahb4712, 11 months ago

If the gcd of x^2+10x+(p+6) and x^2+(p/3)x+8 is x+4

Answers

Answered by Agastya0606
11

Given: The gcd of x^2+10x+(p+6) and x^2+(p/3)x+8 is x+4.

To find: The value of p?

Solution:

  • Now we have given that gcd of x^2+10x+(p+6) and x^2+(p/3)x+8 is x+4. It means that x+4 is the common factor of both the given polynomial.

                  x + 4 = 0

                  x = -4

  • Now we have polynomial equation which will be equal to zero.

                  x^2+10x+(p+6) = 0

                  (-4)^2 + 10(-4) + p + 6 = 0

                  16 - 40 + 6 + p = 0

                  p = 40 - 22

                  p = 18

                  x^2+(p/3)x+8 = 0

                  (-4)^2 -4p/3 + 8 = 0

                  16 + 8 = 4p/3

                  24(3)/4 = p

                  p = 18

Answer:

              So the value of p is 18.

Answered by brainlyvirat187006
2

Answer:

Given: The gcd of x^2+10x+(p+6) and x^2+(p/3)x+8 is x+4.

To find: The value of p?

Solution:

Now we have given that gcd of x^2+10x+(p+6) and x^2+(p/3)x+8 is x+4. It means that x+4 is the common factor of both the given polynomial.

                  x + 4 = 0

                  x = -4

Now we have polynomial equation which will be equal to zero.

                  x^2+10x+(p+6) = 0

                  (-4)^2 + 10(-4) + p + 6 = 0

                  16 - 40 + 6 + p = 0

                  p = 40 - 22

                  p = 18

                  x^2+(p/3)x+8 = 0

                  (-4)^2 -4p/3 + 8 = 0

                  16 + 8 = 4p/3

                  24(3)/4 = p

                  p = 18

Answer:

              So the value of p is 18.

꧁༒BRAINLYVIRAT187006༒꧂

brainlyvirat187006 • Ambitious

Similar questions