Math, asked by gmanideep48, 3 months ago

if the general term of an ap is 9 - 5n and find the sum of first 10 terms of AP​

Answers

Answered by Anonymous
1

Answer:Given: a

n

=9−5n

Taking n=1,

a

1

=9−5(1)=9−5=4

Taking n=2,

a

2

=9−5(2)=9−10=−1

Taking n=3,

a

3

=9−5(3)=9−15=−6

Therefore the series is 4,−1,−6,...

So,a=4,d=a

2

−a

1

=−1−4=−5

Now, we have to find the sum of the first 15

th

terms of the AP

S

n

=

2

n

[2a+(n−1)d]

⇒S

n

=

2

15

[2×4+(15−1)(−5)]

⇒S

15

=

2

15

[8−70]

⇒S

15

=

2

15

[−62]

⇒S

15

=15×(−31)

⇒S

15

=−465

Hence, the sum of 15

th

terms is −465.

Step-by-step explanation:

Answered by mathdude500
5

\large\underline{\sf{Given- }}

\rm :\longmapsto\:An \:  AP \:  series \:  whose \:  a_n = 9 - 5n

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:Sum \:  of  \: 10 \:  terms,  \: S_{10}

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

Sum of n terms of an AP series is given by

\rm :\longmapsto\: S_{n} = \dfrac{n}{2} \bigg(2a + (n - 1)d \bigg)

Wʜᴇʀᴇ,

  • Sₙ is the Sum of first 'n' terms.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:a_n = 9 - 5n

Let first find an AP series,

For n = 1

\rm :\longmapsto\:a_1 = 9 - 5 \times 1

\rm :\longmapsto\:a_1 = 9 - 5

\bf\implies \:a_1 = 4

For n = 2

\rm :\longmapsto\:a_2 = 9 - 5 \times 2

\rm :\longmapsto\:a_2 = 9 - 10

\rm :\longmapsto\:a_2 =  - 1

For n = 3

\rm :\longmapsto\:a_3 = 9 - 5 \times 3

\rm :\longmapsto\:a_3 = 9 - 15

\rm :\longmapsto\:a_3 =  - 6

  • So, AP series is

\rm :\longmapsto\:4, \:  - 1, \:  - 6, -  -  -

So, we have

  • First term of an AP, a = 4

  • Common Difference of an AP, d = - 1 - 4 = - 5

So,

  • Sum of 'n' terms is given by

\rm :\longmapsto\: S_{n} = \dfrac{n}{2} \bigg(2a + (n - 1)d \bigg)

Now, Substitute the values

  • a = 4

  • d = - 5

  • n = 10

Thus,

\rm :\longmapsto\: S_{10} = \dfrac{10}{2} \bigg(2 \times 4 + (10 - 1) \times ( - 5) \bigg)

\rm :\longmapsto\: S_{10} = 5 \times (8 - 45)

\rm :\longmapsto\: S_{10} = 5 \times ( - 37) =  - 185

Additional Information :-

↝ nᵗʰ term of an arithmetic sequence is,

\rm :\longmapsto\:\begin{gathered}\:\:{\underline{{\boxed{\bf{{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Similar questions