Math, asked by fawaz9, 11 months ago

If the Geometric progression 384, 192, 96... and 3/128 3/64 3/32 ......, have their n term equal. Find the value 64 32 of 'n'.​

Answers

Answered by sanketj
24

G.P. one =>

384, 192, 96, ...

first term, a = 384

common ratio, r

r =  \frac{192}{384}  =  \frac{12}{24}  =  \frac{1}{2}

nth term, tn

 t_{n} = a {r}^{n - 1}  = 384 ({ \frac{1}{2} )}^{n - 1}  = 384 {( \frac{ {1}^{n - 1} }{ {2}^{n - 1} } }^{}) \\  = 384 \times  \frac{1}{ {2}^{n - 1} }   \\  t_{n}  =  \frac{384}{ {2}^{n - 1} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   ... \: (i)

G.P. two =>

3/128, 3/64, 3/32, ...

first term, a = 3/128

common ratio, r'

  r_{o} =  \frac{ \frac{3}{64} }{ \frac{3}{128} }  =  \frac{3}{64}  \times  \frac{128}{3}  =  \frac{128}{64}  \\  r_{o} = 2

nth term, tn

 t_{n} = a { r_{o}}^{n - 1}  = ( \frac{3}{128} ) \times  {2}^{n - 1}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ... \: (i)

According to given condition;

their nth terms are equal.

 \frac{384}{ {2}^{n - 1} }  =  \frac{3}{128}  \times  {2}^{n - 1}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:   ... \: (from \: i \: and \: ii) \\  \frac{384 \times 128}{3}  = ( {2}^{n - 1} )( {2}^{n - 1} ) \\ 128 \times 128 =  {2}^{n - 1 + n - 1}  \\  {128}^{2}  =  {2}^{2n - 2}  \\  {( {2}^{7} )}^{2}  =   {( {2}^{n - 1} )}^{2}  \\  {2}^{7}  =  {2}^{n - 1}  \\ n - 1 = 7 \\ n = 8

Answered by akhileshpathak1998
3

The no. of terms for first geometric progression is 9. And the no. of terms in the second series is 8.

Step-by-step explanation:

First we need to find the r which is common ratio.

                    r = \frac{\text{second term}}{\text{first term}}

                     = \frac{192}{384}

                    = \frac{1}{2}

So, the total no. of terms are 9 in this GP.

  For second GP,

                     r = \frac{\text{second term}}{\text{first term}}

                       = \frac{64}{128}

                       = \frac{1}{2}

The total no. of terms are 8.

Basically, to find the no. of terms, write the whole series and just count it. Write it till the lowest common factor.

Similar questions