Math, asked by kanthabadi71, 11 months ago

if the GP is 384 ,192,96,.......and 3by128,3by64,3by32,.....have their nth term equal find the value of n​

Answers

Answered by pateldujeramtyj
1

\boxed{CORRECT QUESTION }

If the G.P is 384,192,96,......and 3/128,3/64,3/32,....have their nth term equal find the value of n.

\boxed{ANSWER}

G.P. one =>

384, 192, 96, ...

first term, a = 384

common ratio, r

r = \frac{192}{384} = \frac{12}{24} = \frac{1}{2}r=

384

192

=

24

12

=

2

1

nth term, tn

\begin{lgathered}t_{n} = a {r}^{n - 1} = 384 ({ \frac{1}{2} )}^{n - 1} = 384 {( \frac{ {1}^{n - 1} }{ {2}^{n - 1} } }^{}) \\ = 384 \times \frac{1}{ {2}^{n - 1} } \\ t_{n} = \frac{384}{ {2}^{n - 1} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ... \: (i)\end{lgathered}

t

n

=ar

n−1

=384(

2

1

)

n−1

=384(

2

n−1

1

n−1

)

=384×

2

n−1

1

t

n

=

2

n−1

384

...(i)

G.P. two =>

3/128, 3/64, 3/32, ...

first term, a = 3/128

common ratio, r'

\begin{lgathered}r_{o} = \frac{ \frac{3}{64} }{ \frac{3}{128} } = \frac{3}{64} \times \frac{128}{3} = \frac{128}{64} \\ r_{o} = 2\end{lgathered}

r

o

=

128

3

64

3

=

64

3

×

3

128

=

64

128

r

o

=2

nth term, tn

t_{n} = a { r_{o}}^{n - 1} = ( \frac{3}{128} ) \times {2}^{n - 1} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ... \: (i)t

n

=ar

o

n−1

=(

128

3

)×2

n−1

...(i)

According to given condition;

their nth terms are equal.

\begin{lgathered}\frac{384}{ {2}^{n - 1} } = \frac{3}{128} \times {2}^{n - 1} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ... \: (from \: i \: and \: ii) \\ \frac{384 \times 128}{3} = ( {2}^{n - 1} )( {2}^{n - 1} ) \\ 128 \times 128 = {2}^{n - 1 + n - 1} \\ {128}^{2} = {2}^{2n - 2} \\ {( {2}^{7} )}^{2} = {( {2}^{n - 1} )}^{2} \\ {2}^{7} = {2}^{n - 1} \\ n - 1 = 7 \\ n = 8\end{lgathered}

2

n−1

384

=

128

3

×2

n−1

...(fromiandii)

3

384×128

=(2

n−1

)(2

n−1

)

128×128=2

n−1+n−1

128

2

=2

2n−2

(2

7

)

2

=(2

n−1

)

2

2

7

=2

n−1

n−1=7

n=8

Similar questions