Math, asked by zehramadani9227, 2 months ago

If the graph of y=f(x) passes through the point (0,1), and dy/dx=xsin(x^2)/y, then f(x)= ?

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \frac{dy}{dx}  =  \frac{x \sin( {x}^{2} ) }{y}  \\

 ydy  =  x \sin( {x}^{2} ) dx  \\

  \implies \:  \int \: ydy  =  \int x \sin( {x}^{2} ) dx  \\

  \implies \:  \frac{ {y}^{2} }{2} = \frac{1}{2}   \int2 x \sin( {x}^{2} ) dx  \\

  \implies \:  \frac{ {y}^{2} }{2} = -  \frac{1}{2} \cos( {x}^{2} )  + C\\

We have, for x= 0, y=1

So,

  \implies \:  \frac{ 1}{2} = -  \frac{1}{2} \cos( 0)  + C\\

  \implies \:  \frac{ 1}{4} =C\\

So, required solution,

  \implies \:  \frac{ {y}^{2} }{2} = -  \frac{1}{2} \cos( {x}^{2} )  +  \frac{1}{4} \\

  \implies \:  2{y}^{2} = - 2 \cos( {x}^{2} )  +   1 \\

Similar questions