Science, asked by zzzzzz15x, 7 months ago

if the gravitational force between a teacher weighting 68 kg and student 52 kg is 1.48 x 10^-8 Nm^2 / kg at what distance are they standing​

Answers

Answered by BrainlyPopularman
13

GIVEN :

 \\ \: \bf {\huge{.}} \:  \: M_{1} = 68 \: Kg \:  \: \:  \: M_{2} = 52 \: Kg \\

 \\ \: \bf {\huge{.}} \:  \: Gravitational \:  \: Force(F)= 1.48 \times  {10}^{ - 8} \: N\\

TO FIND :

• Distance between them = ?

SOLUTION :

• We know that –

 \\ \large\implies{\boxed{ \bf F= \dfrac{GM_{1}M_{2}}{ {r}^{2} }}} \\

• Here –

 \\ \implies \bf G = 6.67 \times  {10}^{ - 11}{ \dfrac{N {m}^{2} }{ {Kg}^{2} } } \\

• Now put the values –

 \\ \implies \bf 1.48 \times  {10}^{ - 8} = \dfrac{(6.67 \times  {10}^{ - 11})(68)(52)}{ {r}^{2} }\\

 \\ \implies \bf  {r}^{2} = \dfrac{(6.67 \times  {10}^{ - 11})(68)(52)}{1.48 \times  {10}^{ - 8} }\\

 \\ \implies \bf  {r}^{2} = \dfrac{6.67 \times  {10}^{ - 11} \times 68  \times 52}{1.48 \times  {10}^{ - 8} }\\

 \\ \implies \bf  {r}^{2} = \dfrac{6.67 \times  {10}^{ - 11 + 8} \times 68  \times 52}{1.48}\\

 \\ \implies \bf  {r}^{2} = \dfrac{6.67 \times  {10}^{ -3} \times 68  \times 52}{1.48}\\

 \\ \implies \bf  {r}^{2} = \dfrac{23585.12 \times  {10}^{ -3} }{1.48}\\

 \\ \implies \bf  {r}^{2} = 15935.89 \times  {10}^{ -3} \\

 \\ \implies \bf  {r}^{2} = 15.93\\

 \\ \implies \bf r= \sqrt{15.93}\\

 \\ \implies \bf r=3.99\\

 \\ \implies \large{ \boxed{ \bf r=4 \: m \: (Approx .)}}\\


Anonymous: Awesomeee
BrainlyPopularman: Thank uhh :)
Similar questions