Physics, asked by mshet952, 7 months ago

If the gravitational force between objects of equal mass is 2.3 * 10 raised to - 8 N, when the objects are 10 m apart, what is the mass of each object?plz give correct answer ​

Answers

Answered by Anonymous
5

 \large \underline \bold{Given :-}

 \small \bold{Gravitational \: Force \: (Fg) = 2.3\times 10^{-8} \: N}

 \small \bold{distance \: between \: objects \: (r) = 10 \: m}

 \small \bold{masses \: of \: each \: object = m1 = m2 = m}

 \large \underline \bold{To Find :-}

 \small \bold{Calculate \: the \: mass \: of \: each \: object = \: ?}

 \large \underline \bold{Gravitational \: Force :-}

\: \: \: \: \:  \small \bold{Fg =\dfrac{Gm1m2}{r^{2}}}

 \small \bold{Where \: , \: G = 6.67\times 10^{-11} \: \dfrac{Nm^{2}}{Kg^{2}}}

 \large \underline \bold{Solution :-}

 \small \bold{On \: Using \: the \: above \: formula -}

 \small \bold{Fg =\dfrac{Gm^{2}}{r^{2}}}

 \small \bold{m^{2} =\dfrac{Fg \: r^{2}}{G}}

 \small \bold{m^{2} =\dfrac{2.3\times 10^{-8}\times 10^{2}}{6.67\times 10^{-11}}}

 \small \bold{m^{2} =\dfrac{2.3\times 10^{-6}}{6.67\times 10^{-11}}}

 \small \bold{m^{2} =\dfrac{2.3\times 10^{5}}{6.67}}

 \small \bold{m^{2} =\dfrac{23\times 10^{4}}{6.67}}

 \small \bold{m^{2} = 3.45\times 10^{4}}

 \small \bold{m = 1.86\times 10^{2} \: Kg}

 \small \bold{m = 186 \: Kg}

 \small \bold{mass \: of \: each \: object \: is \: 186 \: Kg .}

Similar questions