If the hcf of 152 and 272 is expressible in the form 272y + 152x, then find x and y
Answers
Answered by
8
152 = 2*2*2*19
272 =2*2*2*2*17
so hcf is 2*2*2=8
now 8=272y+152x
since a= bq+r
or 272=152*1+(272-152)=152+120
now
272*8+152x=hcf
or 2176+152x=8
or x= -2168/152= -271/19
so 8= 272*8+152*(-271/19)
so x=(-271/19) and y=8
272 =2*2*2*2*17
so hcf is 2*2*2=8
now 8=272y+152x
since a= bq+r
or 272=152*1+(272-152)=152+120
now
272*8+152x=hcf
or 2176+152x=8
or x= -2168/152= -271/19
so 8= 272*8+152*(-271/19)
so x=(-271/19) and y=8
Answered by
6
Answer:
Step-by-step explanation:
⇒ 272 = (152*1) + 120
⇒ 152 = (120*1) + 32
⇒ 120 = (32*3) + 24
⇒ 32 = (24*1) + 8
⇒ 24 = (8*3) + 0
Since the remainder becomes 0 here, so the H.C.F. of 152 and 272 is 8
Now,
272*8 + 152x = H.C.F. of these numbers
⇒ 2176 + 152x = 8
⇒ 152x = 8 - 2176
⇒ 152x = - 2168
⇒ x = - 2168/152
⇒ x = - 271/19
Similar questions