Math, asked by shubham2097, 1 year ago

If the HCF of the two numbers be 13 and lcm 273 then the sum of the numbers will be?

Answers

Answered by Anonymous
10
Let the two numbers be a and b.

Since the H.C.F. is 13, we can write

a=13xa=13x

b=13yb=13y

for any two positive integers x and y.

Given L.C.M. = 273. We can write

13×x×y=27313×x×y=273

⟹xy=273/13⟹xy=273/13

xy=21xy=21

Given a>13a>13and b>13b>13,

13x>13⟹x>113x>13⟹x>1

13y>13⟹y>113y>13⟹y>1

Now, xy=21xy=21

We need to find x and y.

So, factors of 21 are 1,3,7 and 21.

(x,y) can't be (1,21) or (21,1) since x and y should be greater than 1.

Therefore, (x,y) = (3,7) or (7,3)

Thus,

a = 13×3 = 39

b = 13×7 = 91

Thus, (a,b) = (39,91) or (91,39)

Sum of a and b = (a+b) = 39+91 = 130

Similar questions