Physics, asked by lalit4286, 7 months ago

If the heart pushes 1 cc of blood in one second under pressure 20,000 N m2 , the power of heart is
(A) 0.02 W
(B) 400 W
(C) 5 × 10–10 W
(D) 0.2 W​

Answers

Answered by BrainlyIAS
22

Volume of the blood heart pushes (V) = 1 cc

⇒ V = 1 cm³

V = 10⁻⁶ m³

Time (t) = 1 s

Pressure (P) = 20,000 N/m²

Power : It is defined as work done per unit time

Work done too defined as product of pressure and change in volume

\pink{\bigstar}\ \; \sf Power=\dfrac{Work}{Time}\\\\\orange{\bigstar}\ \; \sf P=\dfrac{P\Delta V}{t}

\to \sf P=\dfrac{20,000\times 10^{-6}}{1}\\\\\to \sf P=2\times 10^5\times 10^{-5}\times 10^{-1}\\\\\to \sf P=2\times 10^{-1}\\\\\to \sf P=0.2\ W

Power of the heart = 0.2 W

Option D

Answered by Anonymous
16

\pink{ \underline{ \underline{  \red{ \sf{ Given : }}}}}

  • The pressure of the heart is : 20,000N/m².
  • And the change in volume time of the heart is : 1 cc.

or,

V = 1 cm³

V = \bf{10} ^{-6} m³

\pink{ \underline{ \underline{  \red{ \sf{ To \: find : }}}}}

The power of heart.

\pink{ \underline{ \underline{  \red{ \sf{ Solution : }}}}}

We know that,

  \gray \bigstar{ \underline{ \boxed{ \bf{ \red{ power}  =   \green{\frac{work \: done}{time} }}}}} \gray \bigstar

Where,

V = \bf{10} ^{-6} m³

t = 1 sec

p = 20,000N/.

\pink{ \underline{ \underline{  \red{ \sf{ Procedure  : }}}}}

\longmapsto \sf  power = \frac{20000 \times {10}^{ - 6}  }{1} \\

 \longmapsto \sf power = 2 \times  \cancel{10}^{5}  \times   \cancel{10}^{ - 5}   \times {10}^{ - 1} \\

\longmapsto \sf power = 2 \times  {10}^{ - 1}  \\

 \pink  \longmapsto  \red{\bf power = 0.2W}

Hence,

Option D is the correct answer i.e., : \bf\green{<strong> </strong>0.2W }

\pink{ \underline{ \underline{  \red{ \sf{ Key \: words : }}}}}

Work : It can be defined as a product of change in volume and pressure.

Power : Work done/time

Similar questions