Math, asked by kavyadeepbhatia, 1 year ago

If the height and radius of a cone of volume V is doubled, find the new volume of the cone.


kavyadeepbhatia: Please answer fastt

Answers

Answered by dhonisuresh0703
0
volume of new cone=1/3*22/7*(2r)^2*2h
                                =176r^2h/21
                                =8.38cubic units

dhonisuresh0703: please mark my answer as brainliest
dhonisuresh0703: please feel freee to ask doubts to me
kavyadeepbhatia: Wrong
dhonisuresh0703: sorry the answer is 8.38r^2h cubic units
kavyadeepbhatia: Answer is 8/3× pie × r^2 × h
dhonisuresh0703: s i just substituted the pie value as 22/7 and i simplified it
kavyadeepbhatia: Ok
Answered by Brâiñlynêha
2

\huge\mathbb{SOLUTION:-}

\boxed{\sf{Volume\:of\:cone=\dfrac{1}{3} \pi r{}^{2}h}}

Now we have

  • r= 2r

  • h= 2h

Now the Volume

\sf:\implies Volume=\dfrac{1}{3}  \pi r{}^{2} h\\ \\ \sf:\hookrightarrow r=2r \:\:and\:\:h=2h\\ \\ \sf:\implies Volume=\dfrac{1}{3}\times \pi \times (2r){}^{2}\times 2h\\ \\ \sf:\implies Volume=\dfrac{1}{3} \pi \times 4r{}^{2}\times 2h\\ \\ \sf:\implies Volume=  8 (\dfrac{1}{3} \pi r{}^{2}h)

  • Now the Volume of new cone

\boxed{\sf{Volume\:of\:new\:cone=8\times (Volume\:of\:old) }}

Similar questions