Math, asked by tnvrahmed8486, 1 year ago

If the height of the cylinder is equal to its diameter and the volume is 58212 cubic cm, then find the CSA and TSA of the cylinder.

Answers

Answered by tryin977p50req
0
The CSA of the cylinder is 5544 cmsquare and TSA is 8316 CMsqure.
Answered by XxItzzMrUnknownxX
32

Given :

Height of the cylinder is equal to its diameter and the volume is 58212 cm³.

To Find :

C.S.A and T.S.A of Cylinder .

Solution :

\longmapsto\tt{Height(h)=Diameter(r)}

As we know that Diameter is double of Radius . So ,

\longmapsto\tt{h=2r}

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cylinder=\pi{{r}^{2}h}}

Putting Values :–

\longmapsto\tt{\pi{{r}^{2}\times{2r}}}

\longmapsto\tt{2\pi{{r}^{3}}}

\longmapsto\tt{58212=2\times\dfrac{22}{7}\times{{r}^{3}}}

\longmapsto\tt{58212\times{7}=44\:{r}^{3}}

\longmapsto\tt{\cancel\dfrac{407484}{44}={r}^{3}}

\longmapsto\tt{9261={r}^{3}}

\longmapsto\tt\bf{21\:cm=r}⟼

For C.S.A :

ㅤㅤㅤ

\longmapsto\tt{Height=2r=42\:cm}

Using Formula :

\longmapsto\tt\boxed{C.S.A\:of\:Cylinder=2\pi{rh}}

Putting Values :

ㅤㅤㅤ

\longmapsto\tt{2\times\dfrac{22}{{\cancel{7}}}\times{21}\times{2\times{21}}}

\longmapsto\tt{44\times{6}\times{21}}

\longmapsto\tt\bf{5544\:{cm}^{2}}

For T.S.A :

ㅤㅤㅤ

Using Formula :

ㅤㅤㅤ

\longmapsto\tt\boxed{T.S.A\:of\:Cylindrr=2\pi{r(r+h)}}

ㅤㅤㅤ

Putting Values:

\longmapsto\tt{2\times\dfrac{22}{7}\times{21}\times{(21+42)}}

\longmapsto\tt{2\times\dfrac{22}{{\cancel{7}}}\times{21}\times{{\cancel{63}}}}

\longmapsto\tt{44\times{21}\times{9}}

\longmapsto\tt\bf{8316\:{cm}^{2}}

Similar questions