Math, asked by pratikxettrytiga, 1 month ago

if the height of two right circular cylinders are in the ratio 3:4 and perimeters are in the ratio 1:2. then find the ratio of their volume​

Answers

Answered by senboni123456
0

Step-by-step explanation:

Let the heights of the cylinders be  h_{1}\:\&\:h_{2}\\

And, radii of the base be r_{1}\:\&\:r_{2}\\

Now,

 \frac{h_{1}}{h_{2}}  =  \frac{3}{4}   \:  \: and \:  \:  \frac{2\pi r_{1} }{2\pi r_{2}} =  \frac{1}{2}  \\

  \implies \: \frac{h_{1}}{h_{2}}  =  \frac{3}{4}   \:  \: and \:  \:  \frac{r_{1} }{ r_{2}} =  \frac{1}{2}  \\

Now, their volumes be V_{1}\:\:\&\:\:V_{2}

So,

  \implies \: \frac{V_{1}}{V_{2}}  =   \frac{\pi (r_{1})^{2} h_{1}}{\pi (r_{2}) ^{2} h_{2} }   \\

  \implies \: \frac{V_{1}}{V_{2}}  =   \frac{(r_{1})^{2} h_{1}}{(r_{2}) ^{2} h_{2} }   \\

  \implies \: \frac{V_{1}}{V_{2}}  =   \bigg( \frac{r_{1}}{r_{2} }  \bigg)^{2} .  \frac{h_{1}}{h_{2}} \\

  \implies \: \frac{V_{1}}{V_{2}}  =   \bigg( \frac{1}{2}  \bigg)^{2} .  \frac{3}{4} \\

  \implies \: \frac{V_{1}}{V_{2}}  =    \frac{1}{4}  .  \frac{3}{4} \\

  \implies \: \frac{V_{1}}{V_{2}}  =     \frac{3}{8} \\

 \implies\:V_{1}:V_{2}=3:8\\

Similar questions