Math, asked by iamhana2008, 6 hours ago

If the hypotenuse of a right triangle is
20 cm, then what is the maximum area of
the triangle ?

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let assume that ABC be right-angled triangle right-angled at B

Let assume that BC = x cm and AB = y cm

It is given that Hypotenuse, AC = 20 cm

Now, In right triangle ABC

\rm :\longmapsto\: {x}^{2} +  {y}^{2} =  {20}^{2}

\rm :\longmapsto\: {y}^{2} =  400 -  {x}^{2}

\rm\implies \:y =  \sqrt{400 -  {x}^{2} }  -  -  - (1)

Now,

\rm :\longmapsto\:Area_{(triangle)}, \: A = \dfrac{1}{2}xy

\rm :\longmapsto\:A = \dfrac{1}{2}x \sqrt{400 -  {x}^{2} }

can be rewritten as

\rm :\longmapsto\:2A = x \sqrt{400 -  {x}^{2} }

On squaring both sides, we get

\rm :\longmapsto\: {4A}^{2} =  {x}^{2}(400 -  {x}^{2})

Let assume that

\rm :\longmapsto\: f(x) = {4A}^{2} =  {x}^{2}(400 -  {x}^{2})

\rm :\longmapsto\: f(x) = 400 {x}^{2} -  {x}^{4}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}  f(x) = \dfrac{d}{dx}(400 {x}^{2} -  {x}^{4} )

\rm :\longmapsto\:f'(x) = 800x -  {4x}^{3}

For maxima or minima, we have

\rm :\longmapsto\:f'(x) = 0

\rm :\longmapsto\:800x -  {4x}^{3}  = 0

\rm :\longmapsto\: {4x}^{3} = 800x

\rm :\longmapsto\: {x}^{2} = 200

\bf\implies \:x = 10 \sqrt{2} \: cm

Now,

\rm :\longmapsto\:f'(x) = 800x -  {4x}^{3}

So,

\rm :\longmapsto\:f''(x) = 800 -  {12x}^{2}

\rm :\longmapsto\:f''(10\sqrt{2} ) = 800 -  2400 =  - 1600 < 0

\bf\implies \:f(x) \: is \: maximum

\bf\implies \:Area \: of \: triangle \: is \: maximum

On substituting the value of x in equation (1), we get

\rm :\longmapsto\:y =  \sqrt{400 - 200}

\rm :\longmapsto\:y =  \sqrt{200}

\bf\implies \:y = 10 \sqrt{2}  \: cm

So, Maximum area of triangle ABC is

\rm :\longmapsto\:Area_{(triangle)}, \: A = \dfrac{1}{2} \times 10 \sqrt{2} \times 10 \sqrt{2}

\bf\implies \:\:Area_{(triangle)}, \: A = 100 \:  {cm}^{2}

Attachments:
Similar questions