Physics, asked by adrikasingh6120, 1 year ago

If the kinetic energy becomes 256 times of initial value then new linear momentum

Answers

Answered by AdityaRocks1
3
Hola mate.......here is your answer....

 \: you \: are \: asked \: to \: find \: the \: new \\ kinetic \: energy \: and \: then \: linnear \: \\  momentum. \\  \\ let \: the \: original \: kinetic \:  \: energy  \\ \: of \: the \: body \:  \:  =  \\  \\  \:  \:  \:  \:  \:  \:  \: kinetic \: energy \:  =  \:  \frac{1}{2} m {v }^{2}   \\  \\  \\ new \: kinetic \: energy \:  =  \: (256 )\times \frac{1}{2} m {v}^{2}  \\  \\ we \: can \: write \:  \\  \\  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: p =  \: mv \:  =  \: linnear \: momentum \\  \\  \\ hence \: kinetic \: energy =  \:   \frac{p \: v}{2 }  \\  \\  now \:  \:  you \: can \: see \\  \\   \:  \:  \:  \:  \: kinetic \: energy \:  \:  \alpha  \:  \: linnear \: momentum \\  \\  so \:   \:  \:   \frac{initial \: kinetic \: energy}{final \: kinetic \: energy}  =  \:  \frac{initial \: momentum}{final \: momentum}  \\  \\ but \: final \: kinetic \: energy \:  =  \: 256 \times initial \: kinetic \: energy \\  \\   \\  \frac{initial \: kinetic \: enegy \: }{256 \times initial \: kinetic \: energy}  \:  =  \:  \frac{initial \: momentum}{final \: momentum}  \\  \\  your \: anwe \: is \: thus \\  \\ final \:  \: linnear \: momentum \:  =  \: 256 \times  \: initial \: linnear \: momentum


hope u understood ^_^

Anonymous: nice good awesome fabulous fantastic well explain
AdityaRocks1: tqqqqqq
Similar questions