Physics, asked by eeswaraadityarouthu, 8 months ago

if the kinetic energy of a moving body of linear momentum p is doubled the final momentum of the body will be? answer with explanation​

Answers

Answered by abhi569
40

Explanation:

K.E = 1/2  mv^2

      = 1/2  (mv)^2 /m

      = 1/2   p^2/m    { mv = p}

K.E = p^2 /2m √2mK.E = p

 

     when K E is doubled.

√2m * 2K.E = √2*2mKE

                   = √2*√(2mKE)

                   = √2  * p

momentum is now √2 times of the initial momentum.

Answered by Qᴜɪɴɴ
27

Given:

  • Linear momentum= p
  • Kinetic Energy is doubled

Need to Find:

  • The final momentum= ?

━━━━━━━━━━━━━━━━━━

We know,

K.E

 =  \dfrac{1}{2}m {v}^{2}

 =  \dfrac{1}{2}  \times m {v}^{2}  \times  \dfrac{m}{m}

 =  \dfrac{1}{2}  \dfrac{{m}^{2}  \times {v}^{2}}{m}

     

 =  \dfrac{1}{2}   \dfrac{ \times  {p}^{2}}{m}

Thus,

K.E= \dfrac{1}{2} \dfrac{ \times  {p}^{2}}{m}

==>p =  \sqrt{2 \times m \times ke}

━━━━━━━━━━━━━━━━━━

 

When K E is doubled p2:

 =  \sqrt{2m\times 2ke}

 =  \sqrt{2}  \times  \sqrt{2mke}

 =  \sqrt{2}  \times p

━━━━━━━━━━━━━━━━━━

The Final Momentum is \red{ \sqrt{2} }times of initial momentum

Similar questions