Math, asked by raghavgujjar, 5 months ago

If the lateral surface of a cylinder is 94.2 cm² and its height is 5 cm , then Find :

i) Radius of its Base .
ii) Its Volume (Use π = 3.14)

Answers

Answered by sethrollins13
41

Given :

  • Lateral Surface Area of Cylinder is 94.2 cm² .
  • Height of Cylinder is 5 cm .

To Find :

  • Radius of its base .
  • Volume of Cylinder (π = 3.14)

Solution :

Firstly we will find Radius :

Using Formula :

\longmapsto\tt\boxed{C.S.A\:of\:Cylinder=2\pi{rh}}

Putting Values :

\longmapsto\tt{94.2={\cancel{2}}\times\dfrac{314}{{\cancel{100}}}\times{r}\times{{\cancel{5}}}}

\longmapsto\tt{r=\dfrac{942\times{{\cancel{10}}}}{314\times{{\cancel{10}}}}}

\longmapsto\tt{r=\cancel\dfrac{942}{314}}

\longmapsto\tt\bf{r=3\:cm}

So , The Radius of Cylinder is 3 cm ...

Now ,

\longmapsto\tt{Radius=3\:cm}

\longmapsto\tt{Height=5\:cm}

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cylinder=\pi{{r}^{2}h}}

Putting Values :

\longmapsto\tt{\dfrac{314}{100}\times{3}\times{3}\times{5}}

\longmapsto\tt{\cancel\dfrac{14130}{100}}

\longmapsto\tt\bf{141.30\:{cm}^{3}}

So , The Volume of Cylinder is 141.30 cm³ ...

Answered by Sandhyakarki272
3

Answer 3cm and  141.3cm^3

Step-by-step explanation:

Lateral surface area of cylinder(LSA) =94.2cm^2

Height (h) = 5cm

Radius (r)=?

  Now,

  Lateral surface area of cylinder (LSA) =2π rh

                                                       94.6=2*3.14*r*5

                                                     94.6=31.4*r

                                                    r =3 cm

                                             

                            Again,

                                  Volume of cylinder(V)= πr^2h

                                                                        =3.14* 3*3*5

                                                                        =141.3 cm^3

Similar questions