Math, asked by Ankit1234, 1 year ago

If the latusrectum of an ellipse is equal to half of minor axis, then find it's eccentricity.

Answers

Answered by Anonymous
6
Hi

Here is your answer,

Consider the equation of the ellipse is X²/a² + y²/b² = 1

Length of major axis = 2a
Length of minor axis = 2b

and length of latusrectum = 2b²/a

Given that,    

2b²/a = 2b/2

→ a=2b → b = a/2

⇒ b² = a² ( 1-e²)

⇒ [a/2] = a² (1-e²)

⇒ a²/4 = a² ( 1-e²) 

⇒ 1-e² = 1/4

⇒ e²= 1-1/4

⇒ eccentricity = √3/4 = √3/2

Hope it helps you !
Answered by Anonymous
12

AnswEr:

Let the equation of the ellipse be

 \\  \qquad \sf \frac{ {x}^{2} }{ {a}^{2} } +  \frac{ {y}^{2} }{ {b}^{2} }  = 1 \\  \\

and let e be its eccentricity.

It is given that :

 \qquad \sf Latusrectum =  \frac{1}{2}  \quad(minor \: axis) \\  \\  \\  \implies \sf \:  \frac{2 {b}^{2} }{a}  =  \frac{1}{2}  \: (2b) \\  \\  \\  \implies \sf \: 2b = a \\  \\   \\  \implies \sf \: 4 {b}^{2}  =  {a}^{2}  \\  \\  \\  \implies \sf \: 4 {a}^{2} (1 -  {e}^{2} ) =  {a}^{2}  \\  \\  \\  \implies \sf \: 4 - 4 {e}^{2}  = 1 \\  \\  \\  \implies \sf \: 4 {e}^{ 3}  = 3 \\  \\  \\  \implies \sf \blue {e =  \frac{ \sqrt{3} }{2} }

Similar questions