Math, asked by Ujagar8002, 10 months ago

If the lcm of two numbers is 216 and there product is 7776, what will be it's hcf

Answers

Answered by Brâiñlynêha
15

\huge\mathbb{SOLUTION:-}

\sf\underline{\blue{\:\:\:\: Given:-\:\:\:\:}}

\sf\bullet L.C.M\:of\: 2\: numbers=216\\ \\ \sf \bullet Their\: product=7776\\ \\ \sf\bullet Let\:H.C.F\:be\: x

Now

\boxed{\sf{L.C.M\times H.C.F=Product\:of\: numbers}}

\bf\underline{\red{\:\:\:\:A.T.Q:-\:\:\:\:}}

\sf\implies 216\times x=7776\\ \\ \sf\implies x=\cancel{\dfrac{7776}{216}}\\ \\ \sf\implies x=36\\ \\ \sf\implies So\:H.C.F=36

  • Let's verify

\underline{\dag{\sf{\: Verification:-}}}

\sf\implies H.C.F\times L.C.M=Product\:of\: number's\\ \\ \sf\implies 216\times 36=7776\\ \\ \sf\implies 7776=7776\\ \\ \sf\:\:\:L.H.S=R.H.S\:\:(Hence\: verified!!)

\boxed{\bigstar{\sf{H.C.F=36}}}

Answered by Anonymous
19

Solution

Given

  • LCM of the two numbers is 216

  • Product of the two numbers is 7776

To finD

  • HCF of the two numbers

Let the two numbers be (a,b) and their HCF be y

Now,

\huge{\boxed{\boxed{\tt HCF(a,b) \times LCM(a,b) = a \times b }}}

Substituting the values,

 \leadsto \tt \: y \times 216 = 7776 \\  \\  \leadsto \:  \sf \: y =  \dfrac{7776}{216}  \\  \\  \large{ \leadsto \:  \boxed{ \boxed{ \tt \: y = 36}}}

HCF of the two numbers is 36

Similar questions