Math, asked by savitasingh14782, 2 months ago

If the length 8 cm and breadth 10 cm of a rectangle what is the tea​

Answers

Answered by palakguptavg8
0

Answer:

tea or area

Step-by-step explanation:

8×10=80 cm^2

Answered by AbhinavRocks10
7

\LARGE\mathfrak{\underline{\underline{ Given :-}}}

\sf {Length  \: of\: the\: rectangle\: = 10cm}

\sf {Breadth  \:of\: the\: rectangle = 8cm}

\LARGE\mathfrak{\underline{\underline{ To \: \: \: Find :-}}}

\large\mapsto\texttt{Area of the square = ?}

\LARGE\mathfrak{\underline{\underline{ Formula :-}}}

\begin{gathered}\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{green}{$Perimeter_{ ( \: Rectangle \: )} = 2 ( l + b )$}}}\\\\\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{red}{$Perimeter_{ ( \: Square \: ) } = 4 ( Side )$}}}\\\\\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{blue}{$Area_{ ( \: Square \: ) } = Side^{2}$}}}\end{gathered}

\LARGE\mathrm{\underline{\underline{How \: \: \: to \: \: \: solve :-}}}

As it is given that the perimeter of the is equal to the perimeter of the rectangle.We have been provided with the length and breadth of the rectangle , so by using this we can find the perimeter of the rectangle.And after finding the perimeter of the rectangle we have to insert that perimeter in the perimeter of the square as the perimeters are the same.And from this we can find the side of the square and by using that side we can calculate the area of the square.

\LARGE\mathfrak{\underline{\underline{Solution :-}}}

__________________________________________________________

\begin{gathered}\large:\: \bigstar\textsf\textcolor{orange}{\: \: \: $Perimeter_{ ( \: Rectangle \: ) } = 2 ( l + b ) $ }\\\\\\\large: \: \Longrightarrow\textsf{= 2 ( 10 + 8 ) }\\\\\\\large: \: \Longrightarrow\textsf{= 2 × 18}\\\\\\\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{magenta}{ $Perimeter_{ ( \: Rectangle \: ) } = 36 \: cm $}}}\end{gathered}

__________________________________________________________

  • ⇝As it is given that the perimeter of the square I equal to the perimeter of the rectangle. So we have to assume 36cm as the perimeter of the square.

__________________________________________________________

\begin{gathered}\large:\: \bigstar\textsf\textcolor{orange}{\: \: \: $Perimeter_{ ( \: Square \: ) } = 4 ( Side )$}\\\\\\\large: \: \Longrightarrow\textsf{36 = 4 ( Side )}\\\\\\\large: \: \Longrightarrow\textsf{$\cfrac{36}{4} = Side$}\\\\\\\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{violet}{9cm = Side}}}\end{gathered}

__________________________________________________________

Now we know the side of the square so we can find the area of the square.

__________________________________________________________

\begin{gathered}\large:\: \bigstar\textsf\textcolor{orange}{\: \: \:$Area_{ ( \: Square \: ) } = Side^{2}$}\\\\\\\large: \: \Longrightarrow\textsf{= 9²}\\\\\\\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{red}{$Area_{ ( \: Square \: ) } = 81\: sq. \: cm$}}}\end{gathered}

__________________________________________________________

\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{blue}{Option ( C ) 81 sq. cm.}}}

__________________________________________________________

\begin{gathered}\small\boxed{ \begin{array}{cc}\large\sf\dag \: {\underline{More \: Formulae}} \\ \\ \bigstar \: \sf{Gain = S.P – C.P} \\ \\ \bigstar \:\sf{Loss = C.P – S.P} \\ \\ \bigstar \: \sf{S.P = \dfrac{100+Gain\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100+Gain\%} \times S.P} \\ \\\bigstar \: \sf{ S.P = \dfrac{100-loss\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100-loss\%} \times S.P}\end{array}}\end{gathered}

Similar questions