Math, asked by piyush998877kumar, 6 months ago

if the length and breath of a rectangle are double by what percentage is the area increased​

Answers

Answered by EliteZeal
12

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

\large\underline{\green{\bf Given :-}}

 \:\:

  • Length and breath of a rectangle are doubled

 \:\:

\large\underline{\red{\bf To \: Find :-}}

 \:\:

  • What percentage is the area increased

 \:\:

\large\underline{\orange{\bf Solution :-}}

 \:\:

  • Let the original length be "l"

  • Let the original breadth be "b"

 \:\:

We know that,.

 \:\:

 \underline{\bold{\texttt{Area of rectangle :}}}

 \:\:

➠ Length × Breadth

 \:\:

 \underline{\bold{\texttt{Original Area :}}}

 \:\:

➜ Length × Breadth

 \:\:

➜ l × b

 \:\:

➨ lb ⚊⚊⚊⚊ ⓵

 \:\:

 \underline{\bold{\texttt{Length when doubled :}}}

 \:\:

➠ 2(l)

 \:\:

 \underline{\bold{\texttt{Breadth when doubled :}}}

 \:\:

➠ 2(b)

 \:\:

 \underline{\bold{\texttt{Area of rectangle with new dimensions :}}}

 \:\:

➜ Length × Breadth

 \:\:

➜ 2(l) × 2(b)

 \:\:

➨ 4(lb) ⚊⚊⚊⚊ ⓶

 \:\:

 \underline{\bold{\texttt{Increased area :}}}

 \:\:

Equation ⓶ - ⓵

 \:\:

➜ 4(lb) - (lb)

 \:\:

➨ 3(lb)

 \:\:

 \underline{\bold{\texttt{Percentage of area increased :}}}

 \:\:

 \sf \dfrac { Increased \: Area } { Original \: Area } × 100

 \:\:

 \sf \dfrac { 3(lb) } { lb } × 100

 \:\:

➜ 3 × 100

 \:\:

➨ 300 %

 \:\:

  • Hence there will be 300% increase in area when its length and breadth are doubled

 \:\:

═════════════════════════

Answered by TheRose06
4

\huge\underline{\bf \orange{AnSweR :}}

Let the original length be "l"

Let the original breadth be "b"

We know that,

Area of rectangle :

=> Length × Breadth

Original Area :

➜ Length × Breadth

➜ l × b

➨ lb ⚊⚊⚊⚊ ⓵

Length when doubled

=> 2(l)

Breadth when doubled :

=> 2(b)

Area of rectangle with new dimensions :

➜ Length × Breadth

➜ 2(l) × 2(b)

➨ 4(lb) ⚊⚊⚊⚊ ⓶

Increased area :

⟮ Equation ⓶ - ⓵ ⟯

➜ 4(lb) - (lb)

➨ 3(lb)

Percentage of area increased

=> OriginalArea IncreasedArea ×100

➜ lb3(lb) ×100

➜ 3 × 100

➨ 300 %

Hence there will be 300% increase in area when its length and breadth are doubled.

Similar questions