Math, asked by shantanuwaghmare517, 1 month ago

If the length of a diagonal of a cube is 12 root 3 cm find its surface area and volume

Spam answer will be reported :)​

Answers

Answered by Ladylaurel
34

Answer :-

  • The surface area of cube = 864cm²
  • The volume of cube = 1728cm³

Step-by-step explanation:

To Find:-

  • The surface area of cube
  • The volume of cube

Solution:

Given that,

  • The length of a diagonal of cube is 123 cm.

We know that,

Diagonal of cube = a√3 units,

Where,

  • a = side of cube.

∴ The side of cube :-

a√3 = Diagonal of cube

a√3 = 12√3

a = 12cm.

According the question,

  • The surface area of cube

We know that,

Surface area of cube = 6(a)² sq. units,

∴ The surface area is :-

6(a)²

6(12)²

6 × 144

864cm²

  • The volume of cube

We know that,

Volume of cube = (a)³ cubic units,

∴ The volume is :-

(a)³

(12)³

( 12 × 12 × 12 )

( 144 × 12 )

1728cm³

Answered by ToxicBabe
130

Answer:

Given: Length of the diagonal of a cube is \sf 12 \sqrt{3} cm.

To find: Surface area & Volume of cube?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

☯ Let side of cube be a cm.

⠀⠀⠀⠀

Now,

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

Diagonal of cube is given by,

\star\;{\boxed{\sf{\pink{Diagonal_{\:(cube)} = \sqrt{3} \times side}}}}\\ \\

:\implies\sf 12 \sqrt{3} = \sqrt{3} \times \times a\\ \\ \\ :\implies\sf a =  \dfrac{12 \cancel{\sqrt{3}}}{ \cancel{\sqrt{3}}}\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{a = 12\:cm}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Length\:of\:Side\:of\:cube\:is\: {\textsf{\textbf{12\:cm}}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

⋆ Now, Finding Surface Area of cube,

\star\;{\boxed{\sf{\pink{TSA_{\:(cube)} = 6 \times (side)^2}}}}\\ \\

:\implies\sf TSA_{\:(cube)} = 6 \times (12)^2\\ \\ \\:\implies\sf TSA_{\:(cube)} = 6 \times 12 \times 12\\ \\ \\ :\implies\sf TSA_{\:(cube)} = 6 \times 144\\ \\ \\:\implies{\underline{\boxed{\frak{\purple{TSA_{\:(cube)} = 864\:cm^2}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Surface\:area\:of\:cube\:is\: \bf{864\:cm^2}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

⋆ Now, Volume of cube,

\star\;{\boxed{\sf{\pink{Volume_{\:(cube)} = (side)^3}}}}\\ \\

:\implies\sf Volume_{\:(cube)} = (12)^3\\ \\ \\ :\implies\sf Volume_{\:(cube)} = 12 \times 12 \times 12\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{Volume_{\:(cube)} = 1728\:cm^3}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Volume\:of\:cube\:is\: \bf{1728\:cm^3}.}}}

Similar questions