Math, asked by BMsharma, 9 months ago

If the length of a rectangle is 10 more than its breadth and perimeter is 60 Find its length and breadth

Answers

Answered by rsultana331
23

Answer:

let breadth be xcm

then length is (x+6)cm

now perimeter=2(l+b)

but perimeter is 60(given)

this 2(l+b)=60

now 2(x+6+x)=60cm

now 2(2x+6)=60çm

now 4x+12=60cm

4x=60-12=48cm

4x=48cm x=(48/4)cm=12cm

now breadth=12cm

and lenght=x+6=12+6=18cm

now area= l×b= 12×18=216cm2

Answered by Anonymous
7

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given a rectangle whose length is 10 m more than its breadth
  • Perimeter of rectangle is 60 m

To Find:

  • We have to find the dimensions of rectangle

Figure of Rectangle:

</p><p>\textsf{\qquad \qquad \: \,---------- Length----------\longrightarrow}\\</p><p>\sf{Breadth} \begin{cases}</p><p>\boxed{\begin{minipage}{4cm}</p><p>\textsf{ \\ \\ \\ \\ \\ }</p><p>\end{minipage}}</p><p>\end{cases}</p><p>

Solution:

Let breadth of rectangle = x

Length of rectangle = ( x + 10 )

\boxed{\sf{\pink{Perimeter = 2(Length + Breadth) }}}

_________________________________

\bigstar \: \: \underline{\large\mathfrak\orange{According \: to \: the \: Question:}}

\hookrightarrow \boxed{\sf{Perimeter = 60 m}}

\hookrightarrow \sf{ \: 2(Length + Breadth) = 60}

Substituting the values

\hookrightarrow \sf{ \: 2( x + 10 + x ) = 60}

\hookrightarrow \sf{ \: 2( 2x + 10 ) = 60}

\hookrightarrow \sf{ \: 2x + 10  = \dfrac{60}{2}}

Solving the Equation

\hookrightarrow \sf{ \: 2x + 10 = 30}

\hookrightarrow \sf{ \: 2x = 30-10}

\hookrightarrow \sf{ \: 2x = 20}

\hookrightarrow \sf{ \: x = \dfrac{20}{2} }

\hookrightarrow \sf{ \: x = \cancel{\dfrac{20}{2}} }

\hookrightarrow \boxed{\sf{ \: x = 10 }}

Hence value of x is 10 m

________________________________

Finding the dimensions:

\implies \sf{Breadth = 10 m}

\implies \sf{Length = 10 + 10 }

\implies \sf{20 m} \\

\boxed{\large\mathfrak\red{Length \: of \: Rectangle = 20 m}}

\boxed{\large\mathfrak\red{Breadth \: of \: Rectangle = 10 m}}

_________________________________

\huge\mathfrak\green{Verification:}

1 ) Length is 10 more than Breadth:

\implies \sf{Length - Breadth}

\implies \sf{20 -  10}

\implies \sf{10}

2 ) Perimeter of rectangle is 60 m:

\implies \sf{Perimeter = 2(Length + Breadth)}

\implies \sf{2(20+10)}

\implies \sf{2 \times 30}

\implies \sf{60 m}

Hence Verified !

Similar questions