Math, asked by niravravishankar, 19 days ago

if the length of a rectangle is 3 meters more than the breadth, the perimeter of the rectangle is 22 find the length and breadth

Answers

Answered by shaswatraj2008
1

Answer:

Step-by-step explanation

Let the breadth be x m.

Length = (x+3) m

Perimeter of rectangle= 22 m

2(l+b)=22

x+x+3=22÷2

2x+3=11

2x=11-3

x=8÷2

x=4.

Breadth= x m= 4 m

Length= (x+3)m

4+3 m

7m.

If it helped then mark as Brainliest.

Answered by BlessedOne
9

Given :

  • Length of the rectangle is 3 meters more than the breadth.
  • Perimeter of the rectangle = 22

To find :

  • The length and breadth of the rectangle.

Formula to be used :

\sf\:Rectangle_{perimeter} = \bf\:2(l+b)

where, l denotes length and b denotes the breadth of the rectangle.

Assumption :

Let the breadth of the rectangle be x

Solution :

According to the question,

Length of the rectangle = 3 more than the breadth

Length of the rectangle = ( 3+x )

Again following the question,

\sf\:Rectangle_{perimeter}~=~22~m

Applying the above mentioned formula,

\sf\dashrightarrow\:2(l+b)~=~22~

\sf\dashrightarrow\:2\left[(3+x)+x\right]~=~22~

\sf\dashrightarrow\:2\left[3+x+x\right]~=~22~

\sf\dashrightarrow\:2\left[3+2x\right]~=~22~

\sf\dashrightarrow\:6+4x~=~22~

\sf\dashrightarrow\:4x~=~16~

\sf\dashrightarrow\:x~=~\cancel{\frac{16}{4}}~

\sf\dashrightarrow\tt\red{x~=~4}

Therefore,

Length of the rectangle = 3+x = 3 + 4 = 7m

Breadth of the rectangle = x = 4m

Verification :

\sf\:Rectangle_{perimeter}~=~22~m

\sf\rightrightarrows\:2(l+b)~=~22~

\sf\rightrightarrows\:2(7+4)~=~22~

\sf\rightrightarrows\:2 \times 11~=~22~

\sf\rightrightarrows\:22~=~22~

Hence Verified!~

════════════════════

Similar questions