If the length of chord is 32 cm
and distance of a chord from
the centre of the circle is 12 cm
then the diameter of circle is
Answers
Answered by
0
Answer:
40 CM
Step-by-step explanation:
Hi Buddy Your Answer Is By Pythagoras Theorem
In ∆AOB angle A is 90°
(Reason: Perpendicular drawn from the center of the circle to the chord bisects the chord)
length of the chord= 32/2=16
(OA)²+(AB)²=(OB)²
(12)²+(16)²=(OB)²
144+256=(OB)²
400=(OB)²
OB =20cm
Now,
Diameter = radius ×2
=20×2 =40cm
Therefore the diameter is 40 cm
Hope it will help you
Answered by
0
Answer:
r=20 cm
Step-by-step explanation:
As the perpendicular from centre to chord bisects
the chords
thus in the figure
PA=PB=16cm and OP=12 cm
Now in ΔOPB
r=√(OP²+PB²)
=√(144+256)
=√400
r=20 cm
Attachments:
Similar questions