Math, asked by bhoomikagowda655, 6 months ago

if the length of hypotenuse of a right angled triangle is 13cm and it's base is 5cm thn find the length of its height​

Answers

Answered by hariuthiras
3

Answer:

12cm

Step-by-step explanation:

by Pythagoras theorm

(hypotenuse)2 +(base)2 +(perpendicular)2

so,

(13)2= (5)2+(perpendicular)2

169=25+(p)2

169-25=p2

144=p2

√144=p

p=12

the height of right angled triangle is 12 cm

Answered by SarcasticL0ve
3

\sf Given \begin{cases} & \sf{Hypotenuse = \bf{13\;cm}}  \\ & \sf{Base = \bf{5\;cm}}  \end{cases}\\ \\

Need to find: Length of Perpendicular.

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Let P be the Perpendicular of triangle.

⠀⠀⠀⠀⠀⠀⠀

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(.3,2.5){\large\bf P}\put(2.8,.3){\large\bf 5 cm}\put(1.02,1.02){\framebox(0.3,0.3)}\put(.7,4.8){\large\bf A}\put(.8,.3){\large\bf B}\put(5.8,.3){\large\bf C}\put(4,2.7){\large\bf 13 cm}\end{picture}

⠀⠀⠀⠀⠀⠀⠀

\sf\underline{\bigstar\;Using\; Pythagoras\; theorem\;:}\\ \\

\star\;{\boxed{\sf{\purple{(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2}}}}\\ \\

:\implies\sf (13)^2 = (5)^2 + (P)^2\\ \\

:\implies\sf 169 = 25 + P^2\\ \\

:\implies\sf P^2 = 169 - 25\\ \\

:\implies\sf P^2 = 144\\ \\

:\implies\sf \sqrt{P^2} = \sqrt{144}\\ \\

:\implies{\boxed{\sf{\pink{P = 12\;cm}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\; Height\;or\; Perpendicular\;of\; given\;triangle\;is\; \bf{12\;cm}.}}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\underline{\underline{\bigstar \: \bf\:More\:to\:know\:\bigstar}}} \\  \\

  • Pythagoras Theorem: It states that the sum of the squares of the lengths of the legs of a right triangle is equal to the square of the length of the hypotenuse.

  • (Hypotenuse)² = (Base)² + (Perpendicular)²
Similar questions