if the length of rectangle is incresed by 10% and the breadth is reduced by 10% then the area of the resulting rectangle_____than the area of the oringinal rectangle
Answers
Step-by-step explanation:
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
2
−
2
−
1
5
=
0
x^{2}-2x-15=0
x2−2x−15=0
=
1
a={\color{#c92786}{1}}
a=1
=
−
2
b={\color{#e8710a}{-2}}
b=−2
=
−
1
5
c={\color{#129eaf}{-15}}
c=−15
=
−
(
−
2
)
±
(
−
2
)
2
−
4
⋅
1
(
−
1
5
)
√
2
⋅
1
x=\frac{-({\color{#e8710a}{-2}}) \pm \sqrt{({\color{#e8710a}{-2}})^{2}-4 \cdot {\color{#c92786}{1}}({\color{#129eaf}{-15}})}}{2 \cdot {\color{#c92786}{1}}}
x=2⋅1−(−2)±(−2)2−4⋅1(−15)
2
Step-by-step explanation:
Let length = x
breadth = y
area = xy
Now,
length' = x + 10/100x = 1.1x
breadth' = y + 10/100y = 1.1y
area' = length' * breadth'
= 1.1x * 1.1y
= 1.21 (x *y)
= 1.21 area
Therefore, area is increased by 21%