Math, asked by jot1249, 5 hours ago

if the length of rectangle is (x+2) cm and breadth is (x+1) cm find the area of the rectangle give me right ans​

Answers

Answered by spacelover123
40

Given

  • Length of rectangle ⇒ (x + 2) cm
  • Breadth of rectangle ⇒ (x + 1) cm

_______________________

To Find

  • The area of the rectangle.

_______________________

Solution

Formula to Find the Area of Rectangle → Length × Breadth

Length → (x + 2) cm

Breadth → (x + 1) cm

Method 1

Using binomial multiplication, let's find the area of the rectangle.

→ (x + 2)(x + 1)

→ x(x + 1) + 2(x + 1)

→ x² + x + 2x + 2

→ x² + 3x + 2

∴ The area of the rectangle is x² + 3x + 2

_______________________

Method 2

Using the identity (x + a)(x + b) = x² + (a + b)² + ab, let's find the area od the rectangle.

Identity → (x + a)(x + b) = x² + (a + b)² + ab

Here,

x = x

a = 2

b = 1

→ (x + 2)(x + 1)

→ (x)² + (2 + 1)(x) + 2(1)

→ x² + 3x + 2

∴ The area of the rectangle is x² + 3x + 2

_______________________

Answered by Anonymous
58

Answer:

Given :-

  • The length of a rectangle is (x + 2) cm and the breadth of a rectangle is (x + 1) cm.

To Find :-

  • What is the area of a rectangle.

Formula Used :-

\clubsuit Area Of Rectangle Formula :

\mapsto \sf\boxed{\bold{\pink{Area_{(Rectangle)} =\: Length \times Breadth}}}

Solution :-

Given :

\bigstar\: \: \bf{Length\: of\: Rectangle =\: (x + 2)\: cm}

\bigstar\: \: \bf{Breadth\: of\: Rectangle =\: (x + 1)\: cm}

According to the question by using the formula we get,

\longrightarrow \bf Area_{(Rectangle)} =\: Length \times Breadth

\longrightarrow \sf Area_{(Rectangle)} =\: (x + 2) \times (x + 1)

\longrightarrow \sf Area_{(Rectangle)} =\: x(x + 1) + 2(x + 1)

\longrightarrow \sf Area_{(Rectangle)} =\: x^2 + x + 2(x + 1)

\longrightarrow \sf Area_{(Rectangle)} =\: x^2 + x + 2x + 2

\longrightarrow \sf\bold{\red{Area_{(Rectangle)} =\: (x^2 + 3x + 2)\: cm}}

{\small{\bold{\underline{\therefore\: The\: area\: of\: a\: rectangle\: is\: (x^2 + 3x + 2)\: cm \: .}}}}

Similar questions