Math, asked by ssrndl22, 5 months ago

if the length of tge tangent from (2,3) to the circle x^2+y^2+6x+2ky-6=0 is equal to 7 then k= ​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

Equation of circle:

 {x}^{2}  +  {y}^{2}  + 6x + 2ky - 6 = 0

Differentiating both sides w.r.t x we get,

2x + 2y \frac{dy}{dx}  + 6 + 2k \frac{dy}{dx}  = 0 \\

  \implies 2(x + y \frac{dy}{dx}  + 3 + k \frac{dy}{dx} ) = 0 \\

  \implies(y + k) \frac{dy}{dx}  + (x + 3) = 0 \\

  \implies \frac{dy}{dx}  =   - (\frac{x + 3}{y + k} ) \\

  \implies( \frac{dy}{dx} )_ {( \alpha  \:  \: and \:  \:  \beta )} =   - \frac{ \alpha + 3 }{ \beta  + k }  \\

so, slope of tangent is dy/dx at (α,β)

Equation of tangent

(y - \beta  ) =  -  \frac{ \alpha   + 3}{ \beta  + k } (x -  \alpha  ) \\

Since, it passes through (2,3), so we have,

(3 -  \beta ) =  -  \frac{ \alpha  + 3}{ \beta   + k} (2 -  \alpha ) \\

  \implies(3 -  \beta )( \beta  + k) + ( \alpha  + 3)(2 -  \alpha ) = 0

  \implies3 \beta  + 3k -  { \beta }^{2}  -  \beta k + 2 \alpha  + 6 -  { \alpha }^{2}  - 3 \alpha  = 0

 \implies { \alpha }^{2}  +  \beta  ^{2}  + 3 \alpha  - 2 \alpha   + k\beta  - 3 \beta  - 3(k + 2) = 0

 \implies { \alpha }^{2}  +  { \beta }^{2}  +  \alpha  + (k - 3) \beta   - 3(k + 2) = 0.......(i)

Also, α & β satisfying the equation of circle

 { \alpha }^{2} +  { \beta }^{2}   + 6 \alpha  + 2k \beta  - 6 = 0.....(ii)

Now, distance between the points (2,3) and (α,β) is 7

so,

( \alpha  - 2)^{2}  +  {( \beta  - 3)}^{2}  = 49

  \implies { \alpha }^{2}  - 4 \alpha  + 4 +  { \beta }^{2}  - 6 \beta  + 9 = 49

 \implies { \alpha }^{2}  +  { \beta }^{2}  - 4 \alpha  - 6 \beta  - 36 = 0.....(iii)

From (i) and (ii), we get,

5 \alpha  + (k + 3) \beta  + 3k = 0.....(iv)

From (ii) and (iii), we get,

10 \alpha  + (2k + 6) \beta  + 30 = 0

 \implies5 \alpha  + (k + 3) \beta  + 15 = 0......(v)

On comparing (iv) and (v), we get,

3k = 15 \\  \implies \: k = 5

Similar questions