Math, asked by Mrmanishrajji, 7 months ago

if the length of the Chod 24 cm of a circle and the distance from the length is 5 cm what is the radius of the circle ​

Answers

Answered by amansharma264
46

 \bf \to \: \green{{ \underline{given \div }}}

 \sf \to \: the \: length \: of \: the \: chord \:  = 24cm \\  \\  \sf \to \: the \: distance \: from \: the \: length \:  = 5cm

 \bf \to \:  \pink{{ \underline{  \: find \: the \: radius \: of \: the \: circle}}}

 \bf \to \:  \orange{{ \underline{step  - \: by  - \: step \: -  solution}}}

 \sf \to \: length \: of \: chord \:  = 24cm \\  \\  \sf \to \: distance \: from \: the \: length \:  = 5cm \\  \\  \sf \to \: base \: of \: the \: chord \:  = 12cm \\  \\  \sf \to \: by \: using \: pythagorus \: theorm \\  \\  \sf \to \: h {}^{2} =  {b}^{2} +  {p}^{2} \\  \\  \sf \to \:  {h}^{2}   = (12) {}^{2}  + (5) {}^{2} \\  \\  \sf \to \:  {h}^{2} = 144 + 25 \\  \\  \sf \to \:  {h}^{2}  = 169 \\  \\  \sf \to \: h \:  =  \sqrt{169}   = 13cm \\  \\  \sf \to \: { \underline{the \: radius \: of \: the \: circle \:  = 13cm}}


ButterFliee: Awesome :)
TheMoonlìghtPhoenix: Great!
Answered by Anonymous
564

 \sf  \large \red{\underline{ Question:-}}\\\\

  • if the length of the Chod 24 cm of a circle and the distance from the length is 5 cm what is the radius of the circle

 \\\\\sf  \large \red{\underline{Given:-}}\\\\

  •  \sf \: length \: of  \: the  \: Chod \:  24  \: cm \: ( \: c \: ) \:  = 24 \\
  •  \text{ \sf \: the distance from the length is 5 cm \: ( \: r \: ) = 5}

 \\\\\sf  \large \red{\underline{To   \: Find:-}}\\\\

  •  \text{ \sf \: what is the radius of the circle }

 \\\\\sf  \large  \red{\underline{Solution :-  }}\\\\

 \sf \underline{we \: have \: formulae : } \\  \\ \boxed{ \sf \red{ the \:  radius  \: of  \: a \:  circle  \: are \:  C=2 \times \pi \times r}} \\  \\

 \sf \underline {\: putting \: all \: values : } \\  \\

 \sf \to \: 24 = 2 \times   \frac{22}{7}   \times  5 \\  \\  \sf \to</p><p>24 =  \frac{44}{7}  \times 5 \\  \\ </p><p>   \sf \to \: 12 = 22 \times \frac{5}{7}  \\  \\  \sf \to \: 6 = 11  \times  \frac{5}{7}  \\  \\ </p><p> \sf \to \: 42 = 55 \\  \\ </p><p>  \sf \to \: 55 - 42 \\  \\ </p><p> \sf \to \: 13 \:cm\\  \\

 \\   \sf \underline{ \red{hence \:the  \: radius  \: of  \: the \:  circle \: is \:13 \:cm} \huge \dag  }


ButterFliee: Nice :)
TheMoonlìghtPhoenix: Great!
Similar questions