Math, asked by labherama, 4 months ago

If the length of the latus rectum of ellipse is 5/2 and eccentricity is ½. Then the equation of the ellipse in standard form is

Answers

Answered by mathdude500
6

\large\underline\purple{\bold{Solution :-  }}

\tt \: Let \: the \: equation \: of \: ellipse \: be \: \dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1

☆ According to statement,

\tt \longrightarrow \: eccentricity \: (e) = \dfrac{1}{2}

☆ As we know,

\tt \longrightarrow \:  {b}^{2}  =  {a}^{2}(1 -  {e}^{2}  ) \\ \tt \longrightarrow \:  {b}^{2}  =  {a}^{2} \bigg( 1 -\dfrac{1}{4}  \bigg) \\ \tt \longrightarrow \:  {b}^{2}  = \dfrac{3}{4}  {a}^{2}    \: -  -  (i)

☆ Also, it is given that

\tt \longrightarrow \: Length  \: of \:  Latus \:  Rectum \:  = \dfrac{5}{2}

\tt\implies \:\dfrac{ {2b}^{2} }{a}  = \dfrac{5}{2}

\tt\implies \: {b}^{2}  = \dfrac{5}{4} a -  -  - (ii)

☆ On equating (i) and (ii), we get

\tt \longrightarrow \: \dfrac{3}{4} {a}^{2}  =  \dfrac{5}{4} a

\tt\implies  \boxed{ \red{ \bf \: \:a \:  = \dfrac{5}{3} }}

☆ On substituting value of a in equation (ii), we get

\tt \longrightarrow \:  {b}^{2}  = \dfrac{5}{4}  \times \dfrac{5}{3}

\tt\implies \: \boxed{ \red{ \bf \:  {b}^{2}  = \dfrac{25}{12} }}

☆ So required equation of ellipse is

\tt \longrightarrow \: \dfrac{ {x}^{2} }{\dfrac{ 25 }{9} }  + \dfrac{ {y}^{2} }{\dfrac{25}{12} }  = 1 \\  \\ \tt \longrightarrow \: \dfrac{ {9x}^{2} }{25}  + \dfrac{ {12y}^{2} }{25}  = 1 \\ \\  \tt \longrightarrow \:  {9x}^{2}  +  {12y}^{2}  = 25

Similar questions