If the lengths of the perineter and the hypotenuse of a right- angled triangle is 60 cm. and 26 cm.,then the length of one of its sides must be
यदि किसी समकोण त्रिभुज के परिमाप व कर्ण की लम्बाई 60 cm. व 26 cm. हो, तो उसके एक पाद की लम्बाई होनी
चाहिये :
(1) 14cm
(2) 20 cm
(3) 24 cm
(4) 22 cm
Answers
Answer :
The correct option is :
(3) 24cm
When the base is 10cm , perpendicular is 24cm
and when base is 24cm , perpendicular is 10cm
Given :
- The perimeter of the right angled triangle is 60cm
- The length of the hypotenuse of the triangle is 26cm
To Find :
- The other sides of the triangle
Formulae Used :
- Sum of all the sides of triangle = perimeter of the triangle
- Base² + Perpendicular² = hypotenuse²
Solution :
Let us consider the other two sides of the triangle be x and y
Given ,
Perimeter of triangle = 60cm
Now by Pythagorean theorem we have :
Now we have :
x - 10 = 0 or x - 24 = 0
→ x = 10 or →x = 24
Thus one side is either 10cm or 24cm
since the other side is :
y = 34 - x
so
y = 34 - 10 or y = 34 - 24
→ y = 24cm or → y = 10cm
Thus , the other side is either 24cm or 10cm
...
QUESTION -
If the lengths of the perineter and the hypotenuse of a right- angled triangle is 60 cm. and 26 cm.,then the length of one of its sides must be ...........
यदि किसी समकोण त्रिभुज के परिमाप व कर्ण की लम्बाई 60 cm. व 26 cm. हो, तो उसके एक पाद की लम्बाई होनी चाहिये :...
(1) 14cm.
(2) 20 cm.
(3) 24 cm.
(4) 22 cm
SOLUTION :
From the above Question -
We can gather the following information....
If the lengths of the perineter and the hypotenuse of a right- angled triangle is 60 cm. and 26 cm.
Let the sides it's the required right angled Triangle be a , b and √ a ^ 2 + b ^ 2 .
Now,
a + b = 60 cm - 26 cm = 34 cm.
Now,
In option A :
a = 14 cm
=> b = 20 cm
√ { a ^ 2 + b ^ 2 } Not equal to 26 cm
In Option B :
a = 20 cm
=> b = 14 cm
√ { a ^ 2 + b ^ 2 } Not equal to 26 cm
Option c :
a = 24 cm
b = 10 cm
√ { a ^ 2 + b ^ 2 } = 25 cm.
Have option C is correct Option.....