Math, asked by ArianaGrande7, 5 months ago

if the line segment joining the points A(2,5),B(-5,-2) is divided by the point C such that AC:AB=3:7 find the coordinates of C​

Answers

Answered by MяMαgıcıαη
73

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{ \bold { \underline { \underline { \maltese \:\red{Given} \:\maltese }}}} \:

\:\:\:\:\:\:\bullet\:\:\sf{Line \:segment\: AB \:is\: divided\: by\: the \:point \:C}

\:\:\:\:\:\:\bullet\:\:\sf{Coordinates\: of\: A\: and\: B\: are\: (2\: , \:5) \:,\: (-5\: ,\: -2)}

\:\:\:\:\:\:\bullet\:\:\sf{AC\:\ratio\:AB\:=\:3\:\ratio\:7}

{ \bold { \underline { \underline { \maltese\:\red{ To\:Find }\:\maltese  }}}} \:

  • \sf{Coordinates \: of \: point \:C}

{ \bold { \underline { \underline { \maltese\: \red{Solution} \:\maltese }}}} \:

  • \sf{AC\:\ratio\:AB\:=\:3\:\ratio\:7\:(Given)}

\:\:\:\:\:\:\therefore\:\underline{\sf{ (AC\: =\: 3) \:and\: (AB\:= \:7)}}

\underline\bold\red{Now,}

\:\leadsto\:\tt{BC \:= \:AB \:-\:AC }

\:\leadsto\:\tt{BC \:= \:7 \:-\:3 }

\:\leadsto\:\underline{\underline{\boxed{\tt {\therefore\:BC \:= \:4}}} }\:\orange\bigstar

\star\:\underline{\sf{[So, \:AC \:\ratio\:BC\: =\: 3 \:\ratio\: 4]}}\:\dag

\dag\:\underline{\frak\red{To\:find\:the\:coordinates\:of\:point\:C\:,\:formula\:that\:we\:will\:use\:(Section\:formula)\::-}}

{\pink\bigstar\:\underline{\underline{\boxed {\sf \blue {Section\:formula\:=\:\bigg(\dfrac{m_{1}x_{2}\:+\:m_{2}x_{1}}{m_{1}\:+\:m_{2}}\:,\:\dfrac{m_{1}y_{2}\:+\:m_{2}y_{1}}{m_{1}\:+\:m_{2}}\bigg)}}}}}

\dag\:\underline{\frak\red{The\: values\: we\: have \::-}}

  • \sf{(m_{1}\:=\:3)\:and\:(m_{2}\:=\:4)}

  • \sf{(x_{1}\:=\:2)\:and\:(x_{2}\:=\:-5)}

  • \sf{(y_{1}\:=\:2)\:and\:(y_{2}\:=\:-2)}

\dag\:\underline{\frak\red{Putting \:all \:values\: in\: the\: formula\: :-}}

\ratio\dashrightarrow\:\sf{\bigg(\dfrac{m_{1}x_{2}\:+\:m_{2}x_{1}}{m_{1}\:+\:m_{2}}\:,\:\dfrac{m_{1}y_{2}\:+\:m_{2}y_{1}}{m_{1}\:+\:m_{2}}}\bigg)

\ratio\dashrightarrow\:\sf{\bigg(\dfrac{[3\:\times\:(-5)]\:+\:(4\:\times\:2)}{3\:+\:4}\:,\:\dfrac{[3\:\times\:(-2)]\:+\:(4\:\times\:5)}{3\:+\:4}}\bigg)

\ratio\dashrightarrow\:\sf{\bigg(\dfrac{(-15\:+\:8)}{7}\:,\:\dfrac{(-6\:+\:20)}{7}}\bigg)

\ratio\dashrightarrow\:\sf{\bigg(\dfrac{-7}{7}\:,\:\dfrac{14}{7}}\bigg)

\ratio\dashrightarrow\:\sf{\bigg(\dfrac{\cancel{-7}}{\cancel{7}}\:,\:\dfrac{\cancel{14}}{\cancel{7}}}\bigg)

\ratio\dashrightarrow\:\sf{(-1\:,\:2)}

\underline{\underline{\boxed {\frak {\therefore \green {Coordinates\:of\:point\:C\:\leadsto\:(-1\:,\:2)}}}}}\:\red\bigstar

{ \bold { \underline { \underline { \maltese \:\red{Note} \:\maltese }}}} \:

  • Dear user , if u are site (brainly.in) user. Then answer will be correctly displayed to you.

  • But if you uses the app, please swipe right of the screen to see the full answer.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━


PsychoUnicorn: Amazing. :D
Anonymous: Awesome!
Answered by Anonymous
1

\huge\fcolorbox{black}{lime}{Answer}

Given points are A(−2,5) and B(3,2) 

BCAC=12 , C divides line segment AB externally.

If A(x1,y1) and B(x2,y2) be two end points of a line segment, then the coordinates of the point P(x,y) that divides the line segment externally in the ratio m:n is (m−nmx2−nx1,m−nmy2−ny1).

Thus, the coordinates of C are (2−12(3)−1(−2),2−12(2)−1(5)).

=(16+2,14−5)

=(8,−1)

Similar questions