Math, asked by StrongGirl, 7 months ago

If the line x + 2y = 3 cuts a chord of length r unit with the arcle x2 + y2 =r2 then find r2

Attachments:

Answers

Answered by amansharma264
4

ANSWER.

Option [ A ] is correct.

EXPLANATION.

 \sf \to \: if \: the \: line \:  = x + 2y = 3 \: cuts \: the \: chord \: r \: unit \:  \\  \\  \sf \to \: circle \:  =  {x}^{2}  +  {y}^{2}  =  {r}^{2}

To find the value of r².

  \sf \to \: lines \:  = x + 2y  - 3 = 0 \\  \\  \sf \to \:it \: cuts \: the \: chord \:  = r \: units \\  \\  \sf \to \: half \: of \: the \: chord \:  =  \dfrac{r}{2}  = base \\  \\  \sf \to \: hypotenuse \: = r \\  \\   \sf\to to \: \: find \: perpendicular

 \sf \to \: by \: using \: perpendicular \: distance \: formula \\  \\  \sf \to \: p =   | \frac{(0) + 2(0) -  3}{ \sqrt{ {1}^{2} +  {2}^{2}  } } |   \\  \\  \sf \to \: p \:  =  \dfrac{3}{ \sqrt{5} }  \\  \\  \sf \to \: by \: using \: pythagorus \: theorm \\  \\  \sf \to \:  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \\  \sf \to \:  {r}^{2}  =  \frac{(3) {}^{2} }{ (\sqrt{5} \: ) {}^{2}  }  +  \dfrac{ {r}^{2} }{4} \\  \\  \sf \to  {r}^{2}  =  \frac{9}{5}  +  \frac{ {r}^{2} }{4}  \\  \\  \sf \to \: 20 {r}^{2}  = 36 + 5 {r}^{2}  \\  \\  \sf \to \: 15 {r}^{2}  = 36 \\  \\  \sf \to \:  {r}^{2}  =  \frac{12}{5}

Attachments:
Similar questions