If the line y = mx + c and r* + y = a intersects at A and B and AB = 2k. then show
that c = (1 + m2)(a2 - k2)
Answers
Answered by
0
For real solution
The intersection points are
x
2
+(mx+c)
2
=a
2
and (
m
y−c
)
2
+y
2
=a
2
Solving each
x
2
(1+m
2
)+(2mc)x+(c
2
−a
2
)=0
y
2
(1+m
2
)−2cy+(c
2
−m
2
a
2
)=0
For real solution, discriminant ≥0
D
1
=(2mc)
2
−4(1+m
2
)(c
2
−a
2
)
D
2
=(2c)
2
−4(1+m
2
)(c
2
−m
2
a
2
)
D
1
≥0: 4m
2
c
2
−4[c
2
−a
2
+m
2
c
2
−m
2
a
2
]≥0
4a
2
(1+m
2
)−4c
2
≥0
a
2
(1+m
2
)≥c
2
a
2
(1+m
2
)
≥∣c∣
D
2
≥0: 4c
2
−4[c
2
−m
2
a
2
−m
2
c
2
−m
4
a
2
]≥0
−4[(m
2
+1)(−m
2
a
2
)+m
2
c
2
]≥0
−(m
2
+1)(m
2
a
2
)+m
2
c
2
≤0
c
2
≤(m
2
+1)a
2
∣c∣≤
(m
2
+1)a
2
Similar questions
History,
3 months ago
Social Sciences,
3 months ago
English,
3 months ago
Hindi,
7 months ago
Science,
7 months ago
Social Sciences,
1 year ago
India Languages,
1 year ago