Physics, asked by adrdggg5463, 10 months ago

If the linear momentum is increase by 50%. what is the change in KE

Answers

Answered by ShivamKashyap08
2

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

Let the initial momentum be "P".

And initial Kinetic energy be "K".

\huge{\bold{\underline{Explanation:-}}}

Momentum is increased to 50 %.

So, new momentum will become

\large{P' = P + 0.5 P}

\large{ \therefore P' = 1.5 P}

and, Let the new Kinetic energy be K'.

Now,

Initial Kinetic energy.

\large{\bold{K = \frac{P^2}{2m} -----(1)}}

and, Final Kinetic energy.

\large{\bold{K' = \frac{P'^2}{2m} -----(2)}}

Divide (1) and (2)

\large{ \frac{K}{K'} = \frac{P^2 \times \cancel{2m}}{P'^2 \times \cancel{2m}}}

\large{ \frac{K}{K'} = \frac{P^2}{P'^2}}

Substituting the values.

\large{ \frac{K}{K'} = \frac{P^2}{{(1.5 \: P)}^2}}

\large{ \frac{K}{K'} = \frac{1}{2.25}}

\large{ K' = 2.25 \: K}

% change in Kinetic energy.

\large{\bold{ \% \: Change \: in \: K.E = \frac{K' - K}{K} \times 100 }}

Substituting the values.

\large{ \% \: Change \: in \: K.E = \frac{2.25 K - K}{K} \times 100}

\large{ \% \: Change \: in \: K.E = \frac{1.25 \cancel{K}}{ \cancel{K} \times 100}}

\large{ \% \: Change \: in \: K.E = 1.25 \times 100}

\huge{\boxed{\boxed{ \% \: Change \: in \: K.E = 125 \%}}}

So, Kinetic energy is increased by 125 %.

Similar questions