Physics, asked by ritvijapachori, 10 months ago

If the linear speed of particle is increased by 10% and angular velocity is also increased by 10% than the percent change in centripetal acceleration is

Answers

Answered by sanjeevk28012
24

Given as :

Linear speed of particle is increased by 10%

Angular velocity is also increased by 10%

To Find :

The percent change in centripetal acceleration

Solution :

Centripetal acceleration = a_c = \dfrac{v^{2} }{r}

As linear velocity increases by 10 %

So,   a'_c  = \dfrac{v'^{2} }{r}

i.e  v' = v + 10% of v

         = v + 0.1 v

        = 1.1 v

So, a'_c  = \dfrac{(1.1 v)^{2} }{r}

           = \dfrac{1.21 v^{2} }{r}

So, new linear centripetal acceleration =  a'_c  = \dfrac{1.21 v^{2} }{r}  m/s²

Again

Centripetal acceleration in terms of angular velocity = A_c = ω² r

As angular velocity increases by 10 %

So,   A'_c   = ω²' r

i.e  ω' = ω + 10% of ω

         = ω + 0.1 ω

        = 1.1 ω

So, A'_c   =  (1.1 ω)² r

            = 1.21 ω² r

So, new angular centripetal acceleration =  A'_c  =  1.21 ω² r

Now,

Change in centripetal acceleration = \dfrac{a'_c-a_c}{a_c} × 100

                                                         = \dfrac{\dfrac{1.21v^{2} }{r}  - \dfrac{v^{2} }{r} }{\dfrac{v^{2} }{r} } × 100

                                                         = \dfrac{1.21-1}{1} × 100

                                                        = 21 %

Similarly for angular velocity , change = 21%

Hence, The percent change in centripetal acceleration is 21 %   . Answer

Similar questions