Math, asked by raviharshiteej, 5 months ago

If
the lines 3 + 2ky = 2 and 2x + 5y + 1 = 0 are parallel, then find the value of k​

Answers

Answered by Anonymous
49

Correct Question :

If the lines 3x+2ky=2 and 2x+5y+1=0 are parallel, then find the value of k

Theory :

The system of equations

\sf\:a_1x+b_1y+c_1=0....(1)

and \sf\:a_2x+b_2y+c_2=0...(2)

  1. Intersecting , if \sf\dfrac{a_1}{a_2}\neq\dfrac{b_1}{b_2}
  2. Parallel , if \sf\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}\neq\dfrac{c_1}{c_2}
  3. Coincident, if \sf\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}

Solution :

The given system of equations :

\sf\:3x+2ky-2=0

and \sf\:2x+5y+1=0

This system of equation is of the form

\sf\:a_1x+b_1y+c_1=0

and \sf\:a_2x+b_2y+c_2=0

Where , \sf\:a_1=3\:\:b_1=2k\:\:c_1=-2

and \sf\:a_2=2\:\:b_2=5\:\:c_2=1

For Parallel lines :

\sf\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}\neq\dfrac{c_1}{c_2}

Put the values , then

\sf\implies\dfrac{3}{2}=\dfrac{2k}{5}\neq\dfrac{(-2)}{1}

\sf\implies\dfrac{3}{2}=\dfrac{2k}{5}

\sf\implies\:k=\dfrac{3\times5}{2\times2}

\sf\implies\:k=\dfrac{15}{4}

Therefore , the value of k is 15/4

Answered by venuchinnodugangu
96

Answer:

Answer is 15/4= 3.75

Step-by-step explanation:

a1 X+ b1 Y+ c1 = 0

a2 X + b2 Y+ c2 = 0

from the question a1= 3, b1 =2k, c1 = -2

a2 = 2, b2 = 5, c2 = 1

If two lines are parallel then the following condition must follows :-

a1 / a2 = b1 / b2 # (Not equal) c1/c2

a1/a2 = 3/2

b1/b2 = 2k /5

by cross multiplication we get

3*5= 2k * 2

15=4k

k=15/4

k=3.75

Similar questions