If the lines 3y+4x=1, y=x+5 and 5y+bx=3 are concurrent then b=?
Please explain step by step.
Points :-
MridulAhi1234:
Points :- 100
Answers
Answered by
32
Given,
4x + 3y -1 = 0
x - y + 5 = 0
bx + 5y -3 = 0 are concurrent .
so,
P( 4x + 3y -1) + Q (x - y + 5) + R (bx + 5y -3) = 0
x ( 4P + Q + bR) + y(3P -Q + 5R) + (-P + 5Q -3R) = 0
this is possible when, we think ,
det[{ 4, 1 , b } {3 , -1 , 5 } { -1 , 5 , -3 }] = 0
4(3 - 25) - (-9+5) + b( 15 -1 ) = 0
-88 +4 + 14b = 0
14b - 84 = 0
b = 6
4x + 3y -1 = 0
x - y + 5 = 0
bx + 5y -3 = 0 are concurrent .
so,
P( 4x + 3y -1) + Q (x - y + 5) + R (bx + 5y -3) = 0
x ( 4P + Q + bR) + y(3P -Q + 5R) + (-P + 5Q -3R) = 0
this is possible when, we think ,
det[{ 4, 1 , b } {3 , -1 , 5 } { -1 , 5 , -3 }] = 0
4(3 - 25) - (-9+5) + b( 15 -1 ) = 0
-88 +4 + 14b = 0
14b - 84 = 0
b = 6
Answered by
34
Given that:
are concurrent.
So,
It can be possible if we think
[{ 4, 1, b } { 3, -1, 5 } { -1, 5, -3 }] = 0
Similar questions